Low-budget 3D-printed equipment for continuous flow reactions

Jochen M. Neumaier, Amiera Madani, Thomas Klein and Thomas Ziegler
Beilstein J. Org. Chem. 2019, 15, 558–566. https://doi.org/10.3762/bjoc.15.50

Supporting Information

Supporting Information File 1: All details for the 3D-printed lab equipment and reactors (full part list, exploded-view CAD drawings, Arduino wiring) and all experimental data of the chemical reactions and NMR spectra.
Format: PDF Size: 1.4 MB Download
Supporting Information File 2: This zip-file includes all 3D-printed parts as stl-files for direct 3D printing, as well as stp-files for editing the 3D models, if necessary. It also contains the Arduino software code as an ino-file for controlling of the syringe pumps.
Format: ZIP Size: 912.7 KB Download

Cite the Following Article

Low-budget 3D-printed equipment for continuous flow reactions
Jochen M. Neumaier, Amiera Madani, Thomas Klein and Thomas Ziegler
Beilstein J. Org. Chem. 2019, 15, 558–566. https://doi.org/10.3762/bjoc.15.50

How to Cite

Neumaier, J. M.; Madani, A.; Klein, T.; Ziegler, T. Beilstein J. Org. Chem. 2019, 15, 558–566. doi:10.3762/bjoc.15.50

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 550.6 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mc Veigh, M.; Bellan, L. M. Microfluidic synthesis of radiotracers: recent developments and commercialization prospects. Lab on a chip 2024, 24, 1226–1243. doi:10.1039/d3lc00779k
  • Vázquez-Amaya, L. Y.; Coppola, G. A.; Van der Eycken, E. V.; Sharma, U. K. Lab-scale flow chemistry? Just do it yourself!. Journal of Flow Chemistry 2024. doi:10.1007/s41981-024-00312-5
  • Montaner, M. B.; Penny, M. R.; Hilton, S. T. Digitisation of a modular plug and play 3D printed continuous flow system for chemical synthesis. Digital Discovery 2023, 2, 1797–1805. doi:10.1039/d3dd00128h
  • Ncongwane, T. B.; Ndinteh, D. T.; Smit, E. Automated silylation of flavonoids using 3D printed microfluidics prior to chromatographic analysis: system development. Analytical and bioanalytical chemistry 2023, 415, 7151–7160. doi:10.1007/s00216-023-04981-4
  • Lisboa, T. P.; de Faria, L. V.; de Oliveira, W. B. V.; Oliveira, R. S.; Matos, M. A. C.; Dornellas, R. M.; Matos, R. C. Cost-effective protocol to produce 3D-printed electrochemical devices using a 3D pen and lab-made filaments to ciprofloxacin sensing. Mikrochimica acta 2023, 190, 310. doi:10.1007/s00604-023-05892-y
  • Korabelnikova, V. A.; Gordeev, E. G.; Ananikov, V. P. Systematic study of FFF materials for digitalizing chemical reactors with 3D printing: superior performance of carbon-filled polyamide. Reaction Chemistry & Engineering 2023, 8, 1613–1628. doi:10.1039/d2re00395c
  • Buburuzan, A.-D.; Purcar, I. M.; Dorneanu, S. A. Low Cost High Precision Multiple Purposes Automatic Syringe. In 2023 10th International Conference on Modern Power Systems (MPS), IEEE, 2023. doi:10.1109/mps58874.2023.10187589
  • Menzel, F.; Cotton, J.; Klein, T.; Maurer, A.; Ziegler, T.; Neumaier, J. M. FOMSy: 3D-printed flexible open-source microfluidic system and flow synthesis of PET-tracer. Journal of Flow Chemistry 2023, 13, 247–256. doi:10.1007/s41981-023-00267-z
  • Ibáñez-de-Garayo, A.; Imizcoz, M.; Maisterra, M.; Almazán, F.; Sanz, D.; Bimbela, F.; Cornejo, A.; Pellejero, I.; Gandía, L. M. The 3D-Printing Fabrication of Multichannel Silicone Microreactors for Catalytic Applications. Catalysts 2023, 13, 157. doi:10.3390/catal13010157
  • Rodriguez-Padron, D.; Ahmad, A.; Romero-Carrillo, P.; Luque, R.; Esposito, R. 3D-printing design for continuous flow catalysis. Trends in Chemistry 2022, 4, 739–753. doi:10.1016/j.trechm.2022.05.005
  • Alimi, O. A.; Potgieter, K.; Khumalo, A. A.; Zwane, K.; Mashishi, L. S.; Gaborone, O. G.; Meijboom, R. The synthesis of Aspirin and Acetobromo-α-D-glucose using 3D printed flow reactors: an undergraduate demonstration. Journal of Flow Chemistry 2022, 12, 265–274. doi:10.1007/s41981-022-00236-y
  • Nel, M.; Potgieter, K.; Alimi, O. A.; Nel, A. L.; Meijboom, R. The Automated Synthesis of Aspirin: An Undergraduate Practical Activity. Journal of Chemical Education 2022, 99, 3773–3779. doi:10.1021/acs.jchemed.2c00503
  • Rincón, J. A.; Nieves‐Remacha, M. J.; Mateos, C. doi:10.1002/9783527824595.ch2
  • Xu, X.; Zhang, M.; Jiang, P.; Liu, D.; Wang, Y.; Xu, X.; Ji, Z.; Jia, X.; Wang, H.; Wang, X. Direct ink writing of Pd-Decorated Al2O3 ceramic based catalytic reduction continuous flow reactor. Ceramics International 2022, 48, 10843–10851. doi:10.1016/j.ceramint.2021.12.301
  • du Preez, A.; Meijboom, R.; Smit, E. Low-Cost 3D-Printed Reactionware for the Determination of Fatty Acid Content in Edible Oils using a Base-Catalyzed Transesterification Method in Continuous Flow. Food Analytical Methods 2022, 15, 1816–1825. doi:10.1007/s12161-022-02233-2
  • Concilia, G.; Lai, A.; Thurgood, P.; Pirogova, E.; Baratchi, S.; Khoshmanesh, K. Investigating the mechanotransduction of transient shear stress mediated by Piezo1 ion channel using a 3D printed dynamic gravity pump. Lab on a chip 2022, 22, 262–271. doi:10.1039/d1lc00927c
  • Hone, C. A.; Kappe, C. O. Towards the Standardization of Flow Chemistry Protocols for Organic Reactions. Chemistry–Methods 2021, 1, 454–467. doi:10.1002/cmtd.202100059
  • Yang, J.; Kang, D. S.; Yeon, S.; Han, J.; Son, Y.; Yongshig, S. P.; Kang, D.; Choi, P.; Park, S.-H.; Ha, C.-W. Additive Manufacturing Based Design of Metal Continuous Flow Reactor of Inner Micro Structure for Continuous Mixing and Reaction of Chemical Solvents. Journal of the Korean Society for Precision Engineering 2021, 38, 659–666. doi:10.7736/jkspe.021.060
  • Alimi, O. A.; Meijboom, R. Current and future trends of additive manufacturing for chemistry applications: a review. Journal of materials science 2021, 56, 16824–16850. doi:10.1007/s10853-021-06362-7
  • Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S. D. A.; Noël, T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical reviews 2021, 122, 2752–2906. doi:10.1021/acs.chemrev.1c00332
Other Beilstein-Institut Open Science Activities