pH- and concentration-dependent supramolecular self-assembly of a naturally occurring octapeptide

Goutam Ghosh and Gustavo Fernández
Beilstein J. Org. Chem. 2020, 16, 2017–2025.

Supporting Information

Supporting Information File 1: Materials and methods as well as additional figures.
Format: PDF Size: 611.6 KB Download

Cite the Following Article

pH- and concentration-dependent supramolecular self-assembly of a naturally occurring octapeptide
Goutam Ghosh and Gustavo Fernández
Beilstein J. Org. Chem. 2020, 16, 2017–2025.

How to Cite

Ghosh, G.; Fernández, G. Beilstein J. Org. Chem. 2020, 16, 2017–2025. doi:10.3762/bjoc.16.168

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 709.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • He, H.; Xie, S.; Zheng, K.; He, J.; Ma, M.; Shi, Y.; Chen, S.; Wang, X. Insight into the drying-mediated and thioether bond activated chiral inversion assembly of nano building blocks. European Polymer Journal 2024, 210, 112994. doi:10.1016/j.eurpolymj.2024.112994
  • Daniel, G.; Hilan, G.; Ploeg, L.; Sabatino, D. Self-assembly of amphiphilic helical-coiled peptide nanofibers and inhibition of fibril formation with curcumin. Bioorganic & medicinal chemistry letters 2024, 102, 129682. doi:10.1016/j.bmcl.2024.129682
  • Pang, Y.; Zhang, W.; Zhao, Y.; Hao, H.; Wang, H.; Liang, J. A self-assembling peptide nanofiber hydrogel for biomaterials with rapid stimulation response to naturally positively charged group substances. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 684, 133118. doi:10.1016/j.colsurfa.2023.133118
  • Mukherjee, A.; Ghosh, G. Light-regulated morphology control in supramolecular polymers. Nanoscale 2024, 16, 2169–2184. doi:10.1039/d3nr04989b
  • Ghosh, A.; Mandal, J.; Dubey, S. K.; Padma, S.; Ghosh, N. N.; Behera, A.; Hafiz, S. A.; Ruidas, P.; Midya, R.; Roy, D.; Das, D.; Das, S.; Singh, S.; Bhattacharyya, S.; Mukherjee, S.; Bhattacharjee, S. Concentration- and Solvent-Induced Chiral Tuning by Manipulating Non-Proteinogenic Amino Acids in Glycoconjugate Supra-Scaffolds: Interaction with Protein, and Streptomycin Delivery. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202302529. doi:10.1002/chem.202302529
  • Ghosh, G. Pathway dependent controlled supramolecular polymerization of peptides. Giant 2023, 14, 100160. doi:10.1016/j.giant.2023.100160
  • Sahare, S.; Ghoderao, P.; Chan, Y.; Lee, S.-L. Surface supramolecular assemblies tailored by chemical/physical and synergistic stimuli: a scanning tunneling microscopy study. Nanoscale 2023, 15, 1981–2002. doi:10.1039/d2nr05264d
  • Zhang, W.; Pang, Y.; Zhao, Y.; Hao, H.; Wang, H.; Liang, J. A Self-Assembling Peptide Nanofiber Hydrogel for Biomaterials with Rapid Stimulation Response to Naturally Positively Charged Group Substances. Elsevier BV 2023. doi:10.2139/ssrn.4620675
  • Sabatino, D.; Daniel, G.; Hilan, G.; Ploeg, L. Self-Assembly of Amphiphilic Helical-Coiled Peptide Nanofibers and Inhibition of Fibril Formation with Curcumin. Elsevier BV 2023. doi:10.2139/ssrn.4676308
  • Alnemeh-Al Ali, H.; Griveau, A.; Artzner, F.; Dupont, A.; Lautram, N.; Jourdain, M. A.; Eyer, J. Investigation on the self-assembly of the NFL-TBS.40-63 peptide and its interaction with gold nanoparticles as a delivery agent for glioblastoma. International journal of pharmaceutics: X 2022, 4, 100128. doi:10.1016/j.ijpx.2022.100128
  • Asokan-Sheeja, H.; Yang, S.; Adones, A. A.; Chen, W.; Fulton, B. B.; Chintapula, U. K.; Nguyen, K. T.; Lovely, C. J.; Brautigam, C. A.; Nam, K.; Dong, H. Self-assembling Peptides with Internal Ionizable Unnatural Amino Acids: A General Approach to pH-responsive Peptide Materials. Chemistry, an Asian journal 2022, 17, e202200724. doi:10.1002/asia.202200724
  • Wang, X.; Feng, C. Chiral fiber supramolecular hydrogels for tissue engineering. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2022, 15, e1847. doi:10.1002/wnan.1847
  • Pohl, C.; Effantin, G.; Kandiah, E.; Meier, S.; Zeng, G.; Streicher, W.; Segura, D. R.; Mygind, P. H.; Sandvang, D.; Nielsen, L. A.; Peters, G. H. J.; Schoehn, G.; Mueller-Dieckmann, C.; Noergaard, A.; Harris, P. pH- and concentration-dependent supramolecular assembly of a fungal defensin plectasin variant into helical non-amyloid fibrils. Nature communications 2022, 13, 3162. doi:10.1038/s41467-022-30462-w
  • Mollazadeh, S.; Babaei, S.; Ostadhassan, M.; Yazdian-Robati, R. Concentration-dependent assembly of Bovine serum albumin molecules in the doxorubicin loading process: Molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 640, 128429. doi:10.1016/j.colsurfa.2022.128429
  • Qiao, L.; Yang, H.; Gao, S.; Li, L.; Fu, X.; Wei, Q. Research progress on self-assembled nanodrug delivery systems. Journal of materials chemistry. B 2022, 10, 1908–1922. doi:10.1039/d1tb02470a
  • Ghosh, U.; Ghosh, G. Supramolecular Self-Assembled Peptide-Based Nanostructures and Their Applications in Biomedicine. Pharmaceutical Applications of Supramolecules; Springer International Publishing, 2022; pp 241–271. doi:10.1007/978-3-031-21900-9_10
  • Ghosh, G.; Barman, R.; Mukherjee, A.; Ghosh, U.; Ghosh, S.; Fernández, G. Control over Multiple Nano‐ and Secondary Structures in Peptide Self‐Assembly. Angewandte Chemie 2021, 134. doi:10.1002/ange.202113403
  • Ghosh, G.; Barman, R.; Mukherjee, A.; Ghosh, U.; Ghosh, S.; Fernández, G. Control over multiple Nano- and Secondary Structures in Peptide Self-Assembly. Angewandte Chemie (International ed. in English) 2021, 61, e202113403. doi:10.1002/anie.202113403
  • Ghosh, G.; Kartha, K. K.; Fernández, G. Tuning the mechanistic pathways of peptide self-assembly by aromatic interactions. Chemical communications (Cambridge, England) 2021, 57, 1603–1606. doi:10.1039/d0cc07199d
Other Beilstein-Institut Open Science Activities