Supporting Information
| Supporting Information File 1: Analytical data of the products. | ||
| Format: PDF | Size: 131.4 KB | Download |
Cite the Following Article
One-pot multicomponent green Hantzsch synthesis of 1,2-dihydropyridine derivatives with antiproliferative activity
Giovanna Bosica, Kaylie Demanuele, José M. Padrón and Adrián Puerta
Beilstein J. Org. Chem. 2020, 16, 2862–2869.
https://doi.org/10.3762/bjoc.16.235
How to Cite
Bosica, G.; Demanuele, K.; Padrón, J. M.; Puerta, A. Beilstein J. Org. Chem. 2020, 16, 2862–2869. doi:10.3762/bjoc.16.235
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 8.9 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Bosica, G.; Abdilla, R. N ‐Unsubstituted Dihydropyridines and Pyridones via Multicomponent Synthesis Under a Bio‐Derived Heterogeneous Catalyst. ChemistrySelect 2025, 10. doi:10.1002/slct.202506016
- Hu, H.; Wei, Y.; Wang, X.; Peng, M.; Xu, Y.; Yang, S.; Zhang, Y.; Wang, J.; Yu, F. Iron(III)-Catalyzed Methanesulfonic-Acid-Mediated [3 + 2 + 1C] Annulation of Enaminones with 1,3-Dioxolane: Access to 2-Hydroxy-1,2-dihydropyridines. Organic letters 2025, 27, 10676–10682. doi:10.1021/acs.orglett.5c03165
- Vazquez, C.; Yara, S.; Cobo, M.; Murguía, M.; Sathicq, Á. G.; Romanelli, G. P. Catalyst- and solvent-free multicomponent synthesis of dihydropyridines from biomass-derived building blocks. Sustainable Chemistry and Pharmacy 2025, 46, 102123. doi:10.1016/j.scp.2025.102123
- Aguilera, E. X.; Sathicq, Á. G.; Sosa, A.; Murguía, M. C.; Martínez, J. J.; Pizzio, L. R.; Romanelli, G. P. Mesostructured Silica–Zirconia–Tungstophosphoric Acid Composites as Catalyst in Calcium Channel Blocker Nifedipine Synthesis. Catalysts 2025, 15, 537. doi:10.3390/catal15060537
- Krzeszewski, M.; Vakuliuk, O.; Tasior, M.; Wołos, A.; Roszak, R.; Molga, K.; Teimouri, M. B.; Grzybowski, B. A.; Gryko, D. T. Computer-Generated, Mechanistic Networks Assist in Assigning the Outcomes of Complex Multicomponent Reactions. Journal of the American Chemical Society 2025, 147, 15636–15644. doi:10.1021/jacs.5c02846
- Faizan, M.; Kumar, R.; Mazumder, A.; Salahuddin; Tyagi, P. K.; Kapoor, B. Synthesis of Pyridines/Dihydropyridines via Hantzsch Reaction, Structure-activity Relationship and Interactions with Targets: A Review. Current Organic Chemistry 2025, 29, 1181–1196. doi:10.2174/0113852728331961240918115757
- Colombo Migliorero, M. B.; Palermo, V.; Ponzinibbio, A.; Romanelli, G. P. Heteropolyacid-alumina composites as heterogeneous catalysts for the synthesis of organic compounds: a comprehensive review. Reviews in Chemical Engineering 2025, 41, 491–523. doi:10.1515/revce-2024-0085
- Soni, A.; Sharma, M.; Singh, R. K. A Decade of Catalytic Progress in 1,4-Dihydropyridines (1,4-DHPs) Synthesis (2016-2024). Current organic synthesis 2025, 22, 703–720. doi:10.2174/0115701794374153250307065611
- Faizan, M.; Kumar, R.; Mazumder, A.; Salahuddin; Kukreti, N.; Tyagi, P. K.; Kapoor, B. Hantzsch reaction: The important key for pyridine/dihydropyridine synthesis. Synthetic Communications 2024, 54, 1221–1244. doi:10.1080/00397911.2024.2377738
- Bosica, G.; Abdilla, R. Novel Biopolymer-Based Catalyst for the Multicomponent Synthesis of N-aryl-4-aryl-Substituted Dihydropyridines Derived from Simple and Complex Anilines. Molecules (Basel, Switzerland) 2024, 29, 1884. doi:10.3390/molecules29081884
- Martinho, L. A.; Andrade, C. K. Z. HPW-Catalyzed environmentally benign approach to imidazo[1,2-a]pyridines. Beilstein journal of organic chemistry 2024, 20, 628–637. doi:10.3762/bjoc.20.55
- He, Y.; Wang, H.; Ge, C.; Yan, H. A comprehensive discussion on photophysical properties of dihydropyridines: Experimental and theoretical studies. Journal of Molecular Structure 2023, 1281, 135167. doi:10.1016/j.molstruc.2023.135167
- Peng, H.; Zhang, Y.; Deng, G. Silver(I)-Catalyzed Tandem Reaction of Enynones and 4-Alkenyl Isoxazoles: Synthesis of 2-(Furan-2-yl)-1,2-dihydropyridines. The Journal of organic chemistry 2023, 88, 7038–7045. doi:10.1021/acs.joc.3c00312
- Maikhuri, V. K.; Verma, V.; Mathur, D.; Prasad, A. K.; Chaudhary, A.; Kumar, R. Sugars in Multicomponent Reactions: A Toolbox for Diversity-Oriented Synthesis. Synthesis 2023, 55, 1007–1041. doi:10.1055/s-0042-1751418
- Aleksić, J.; Stojanović, M.; Bošković, J.; Baranac-Stojanović, M. Solid-state silica gel-catalyzed synthesis of fluorescent polysubstituted 1,4- and 1,2-dihydropyridines. Organic & biomolecular chemistry 2023, 21, 1187–1205. doi:10.1039/d2ob02119f
- Vala, R. M.; Patel, H. M. Recent developments in the Hantzsch synthesis of dihydropyridines. Advances in Heterocyclic Chemistry; Elsevier, 2023; pp 179–208. doi:10.1016/bs.aihch.2023.04.001
- Bosica, G.; Abdilla, R. Recent Advances in Multicomponent Reactions Catalysed under Operationally Heterogeneous Conditions. Catalysts 2022, 12, 725. doi:10.3390/catal12070725
- Bazani, H. A. G.; Thomé, A.; Affeldt, R. F.; Probst, L. F. D. SBA-15 obtained from rice husk ashes wet-impregnated with metals (Al, Co, Ni) as efficient catalysts for 1,4-dihydropyridine three-component reaction. New Journal of Chemistry 2022, 46, 7899–7909. doi:10.1039/d1nj04835j
- Sohal, H. S. A review on recent trends in synthesis and applications of 1,4-dihydropyridines. Materials Today: Proceedings 2022, 48, 1163–1170. doi:10.1016/j.matpr.2021.08.209
- Bosica, G.; Cachia, F.; De Nittis, R.; Mariotti, N. Efficient One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via a Three-Component Biginelli Reaction. Molecules (Basel, Switzerland) 2021, 26, 3753. doi:10.3390/molecules26123753