Cite the Following Article
Selected peptide-based fluorescent probes for biological applications
Debabrata Maity
Beilstein J. Org. Chem. 2020, 16, 2971–2982.
https://doi.org/10.3762/bjoc.16.247
How to Cite
Maity, D. Beilstein J. Org. Chem. 2020, 16, 2971–2982. doi:10.3762/bjoc.16.247
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 10.5 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Yang, L.; Zheng, K.; Wang, Y.; Qu, Z.; Han, H.; Liu, L.; Zhang, W.; Chen, S.; Hu, C.; Hao, F. Simulating green fluorescent proteins: The potential of fluorescent aptamers and peptides for biosensing and imaging. Arabian Journal of Chemistry 2025, 0, 1–15. doi:10.25259/ajc_254_2025
- Adhikari, S.; Ghosh, S.; Sarathi Addy, P. Advancing Biomarker Detection with Peptide-Integrated Fluorescent Probes. Chemistry, an Asian journal 2025, 20, e00211. doi:10.1002/asia.202500211
- Wu, Y.; Wong, Y.-T.; Yeung, Y.-H.; Lam, P.-L.; Chau, H.-F.; Tam, W.-S.; Zhang, Q.; Tai, W. C. S.; Wong, K.-L. Peptide Multifunctionalization via Modular Construction of Trans-AB2C Porphyrin on Resin. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2025, 12, e2409771. doi:10.1002/advs.202409771
- Yu, X.; Jin, J.; Si, Y.; Zhang, H.; Song, Z. A peptide-based fluorescent bioprobe for EphA2-overexpressing tumor targeting and image-guided surgical resection. Bioorganic & medicinal chemistry 2025, 120, 118090. doi:10.1016/j.bmc.2025.118090
- Tong, P.-H.; Wu, T.-Y.; Li, M.; Wang, H.-B.; Zheng, F.; Xu, L.; Dou, W.-T. Fluorescent probes for the visualization of membrane microdomain, deformation, and fusion. Smart molecules : open access 2024, 3, e20240059. doi:10.1002/smo.20240059
- Subramanian, S.; Jain, M.; Misra, R.; Jain, R. Peptide-based therapeutics targeting genetic disorders. Drug discovery today 2024, 29, 104209. doi:10.1016/j.drudis.2024.104209
- Tamrakar, A.; Asthana, S.; Kumar, P.; Garg, N.; Pandey, M. D. Design of C2-symmetric pseudopeptides for in vivo detection of Cu(II) through controlled supramolecular nano-assembly. Organic & biomolecular chemistry 2024, 22, 6409–6418. doi:10.1039/d4ob01011f
- Wynne, C.; Elmes, R. B. P. Modified synthetic peptides: from therapeutics to chemosensors. Sensors & Diagnostics 2024, 3, 987–1013. doi:10.1039/d4sd00022f
- Hamsar, M. N.; Sazili, A. Q.; Md Tohid, S. F. Chemical probe as specific detector of porcine protein or peptide in meat and meat-based products: Potential applications, challenges, and the way forward. Journal of Agriculture and Food Research 2024, 15, 101026. doi:10.1016/j.jafr.2024.101026
- Ding, J.; He, Z.; Zhai, Y.; Ye, L.; Ji, J.; Yang, X.; Zhai, G. Advances in metal-based nano drugs and diagnostic probes for tumor. Coordination Chemistry Reviews 2024, 501, 215594. doi:10.1016/j.ccr.2023.215594
- Sviben, I.; Glavaš, M.; Erben, A.; Bachelart, T.; Pavlović Saftić, D.; Piantanida, I.; Basarić, N. Dipeptides Containing Pyrene and Modified Photochemically Reactive Tyrosine: Noncovalent and Covalent Binding to Polynucleotides. Molecules (Basel, Switzerland) 2023, 28, 7533. doi:10.3390/molecules28227533
- Wang, B.; Wang, L.; Chen, C.; Zhang, Y.; Gao, J.; Lu, K.; Yan, C.; Nan, G.; Li, Y. A Review on Recent Advances in Peptide‐based Fluorescence Probes and their Potential Applications. ChemistrySelect 2023, 8. doi:10.1002/slct.202302216
- Maity, D. Recent advances in the modulation of amyloid protein aggregation using the supramolecular host-guest approaches. Biophysical chemistry 2023, 297, 107022. doi:10.1016/j.bpc.2023.107022
- Haque, R.; Maity, D. Small molecule-based fluorescent probes for the detection of α-Synuclein aggregation states. Bioorganic & medicinal chemistry letters 2023, 86, 129257. doi:10.1016/j.bmcl.2023.129257
- Viorica, R.; Pawel, P.; Płociński, T.; Gloc, M.; Dobrucka, R.; Kurzydłowski, K. J.; Boguslaw, B. Consideration of a new approach to clarify the mechanism formation of AgNPs, AgNCl and AgNPs@AgNCl synthesized by biological method. Discover nano 2023, 18, 2. doi:10.1186/s11671-023-03777-w
- Maujean, T.; Wagner, P.; Valencia, C.; Riché, S.; Iturrioz, X.; Villa, P.; Girard, N.; Karpenko, J.; Gulea, M.; Bonnet, D. Rapid and Highly Selective Fluorescent Labeling of Peptides via a Thia-Diels-Alder Cycloaddition: Application to Apelin. Bioconjugate chemistry 2022, 34, 162–168. doi:10.1021/acs.bioconjchem.2c00500
- Tantipanjaporn, A.; Kung, K. K.-Y.; Wong, M.-K. Fluorogenic Protein Labeling by Generation of Fluorescent Quinoliziniums Using [Cp*RhCl2]2. Organic letters 2022, 24, 5835–5839. doi:10.1021/acs.orglett.2c02389
- Khalily, M. P.; Ramakers, B. E. I.; Guo, H.; Löwik, D. W. P. M. Responsive Peptide-based Materials: Stimulation by Chemical and Biological Signals. Chemoresponsive Materials; The Royal Society of Chemistry, 2022; pp 343–377. doi:10.1039/9781839166136-00343
- Erben, A.; Sviben, I.; Mihaljević, B.; Piantanida, I.; Basarić, N. Non-Covalent Binding of Tripeptides-Containing Tryptophan to Polynucleotides and Photochemical Deamination of Modified Tyrosine to Quinone Methide Leading to Covalent Attachment. Molecules (Basel, Switzerland) 2021, 26, 4315. doi:10.3390/molecules26144315
- Rozhin, P.; Charitidis, C. A.; Marchesan, S. Self-Assembling Peptides and Carbon Nanomaterials Join Forces for Innovative Biomedical Applications. Molecules (Basel, Switzerland) 2021, 26, 4084. doi:10.3390/molecules26134084