Selected peptide-based fluorescent probes for biological applications

Debabrata Maity
Beilstein J. Org. Chem. 2020, 16, 2971–2982.

Cite the Following Article

Selected peptide-based fluorescent probes for biological applications
Debabrata Maity
Beilstein J. Org. Chem. 2020, 16, 2971–2982.

How to Cite

Maity, D. Beilstein J. Org. Chem. 2020, 16, 2971–2982. doi:10.3762/bjoc.16.247

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 10.5 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Wynne, C.; Elmes, R. B. P. Modified synthetic peptides: from therapeutics to chemosensors. Sensors & Diagnostics 2024, 3, 987–1013. doi:10.1039/d4sd00022f
  • Hamsar, M. N.; Sazili, A. Q.; Md Tohid, S. F. Chemical probe as specific detector of porcine protein or peptide in meat and meat-based products: Potential applications, challenges, and the way forward. Journal of Agriculture and Food Research 2024, 15, 101026. doi:10.1016/j.jafr.2024.101026
  • Ding, J.; He, Z.; Zhai, Y.; Ye, L.; Ji, J.; Yang, X.; Zhai, G. Advances in metal-based nano drugs and diagnostic probes for tumor. Coordination Chemistry Reviews 2024, 501, 215594. doi:10.1016/j.ccr.2023.215594
  • Sviben, I.; Glavaš, M.; Erben, A.; Bachelart, T.; Pavlović Saftić, D.; Piantanida, I.; Basarić, N. Dipeptides Containing Pyrene and Modified Photochemically Reactive Tyrosine: Noncovalent and Covalent Binding to Polynucleotides. Molecules (Basel, Switzerland) 2023, 28, 7533. doi:10.3390/molecules28227533
  • Wang, B.; Wang, L.; Chen, C.; Zhang, Y.; Gao, J.; Lu, K.; Yan, C.; Nan, G.; Li, Y. A Review on Recent Advances in Peptide‐based Fluorescence Probes and their Potential Applications. ChemistrySelect 2023, 8. doi:10.1002/slct.202302216
  • Maity, D. Recent advances in the modulation of amyloid protein aggregation using the supramolecular host-guest approaches. Biophysical chemistry 2023, 297, 107022. doi:10.1016/j.bpc.2023.107022
  • Haque, R.; Maity, D. Small molecule-based fluorescent probes for the detection of α-Synuclein aggregation states. Bioorganic & medicinal chemistry letters 2023, 86, 129257. doi:10.1016/j.bmcl.2023.129257
  • Viorica, R.; Pawel, P.; Płociński, T.; Gloc, M.; Dobrucka, R.; Kurzydłowski, K. J.; Boguslaw, B. Consideration of a new approach to clarify the mechanism formation of AgNPs, AgNCl and AgNPs@AgNCl synthesized by biological method. Discover nano 2023, 18, 2. doi:10.1186/s11671-023-03777-w
  • Maujean, T.; Wagner, P.; Valencia, C.; Riché, S.; Iturrioz, X.; Villa, P.; Girard, N.; Karpenko, J.; Gulea, M.; Bonnet, D. Rapid and Highly Selective Fluorescent Labeling of Peptides via a Thia-Diels-Alder Cycloaddition: Application to Apelin. Bioconjugate chemistry 2022, 34, 162–168. doi:10.1021/acs.bioconjchem.2c00500
  • Tantipanjaporn, A.; Kung, K. K.-Y.; Wong, M.-K. Fluorogenic Protein Labeling by Generation of Fluorescent Quinoliziniums Using [Cp*RhCl2]2. Organic letters 2022, 24, 5835–5839. doi:10.1021/acs.orglett.2c02389
  • Erben, A.; Sviben, I.; Mihaljević, B.; Piantanida, I.; Basarić, N. Non-Covalent Binding of Tripeptides-Containing Tryptophan to Polynucleotides and Photochemical Deamination of Modified Tyrosine to Quinone Methide Leading to Covalent Attachment. Molecules (Basel, Switzerland) 2021, 26, 4315. doi:10.3390/molecules26144315
  • Rozhin, P.; Charitidis, C. A.; Marchesan, S. Self-Assembling Peptides and Carbon Nanomaterials Join Forces for Innovative Biomedical Applications. Molecules (Basel, Switzerland) 2021, 26, 4084. doi:10.3390/molecules26134084
Other Beilstein-Institut Open Science Activities