Cite the Following Article
Copper catalysis with redox-active ligands
Agnideep Das, Yufeng Ren, Cheriehan Hessin and Marine Desage-El Murr
Beilstein J. Org. Chem. 2020, 16, 858–870.
https://doi.org/10.3762/bjoc.16.77
How to Cite
Das, A.; Ren, Y.; Hessin, C.; Desage-El Murr, M. Beilstein J. Org. Chem. 2020, 16, 858–870. doi:10.3762/bjoc.16.77
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 311.9 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Cirillo, C.; Iuliano, M.; Abrar, S.; Navarrete Astorga, E.; Sarno, M. Tribo-Catalytic Degradation of Methyl Orange Dye via Cu/Al2O3 Nanoparticles. Lubricants 2025, 13, 418. doi:10.3390/lubricants13090418
- Rakshit, S.; Mitra, J.; Saha, R.; Maji, R. C. Ligand-driven redox transformations and catalytic activities of mononuclear copper complexes: structural and spectroscopic insights. Dalton transactions (Cambridge, England : 2003) 2025, 54, 13215–13227. doi:10.1039/d5dt01511a
- Schulz, M.; Poddelskii, A.; Bohnert, H. A.; Eckhardt, F.; Hirner, L.; Leingang, S.; Kaifer, E.; Himmel, H. Variation of the Redox Properties and Coordination Chemistry of Redox‐Active Aromatic Diguanidine Ligands with the Substitution Pattern. European Journal of Inorganic Chemistry 2025, 28. doi:10.1002/ejic.202500346
- Parthiban, K.; Sundaram, G. A.; Ganapathy, D. Multifunctional bioactivity of the [Cu(en)(Im)2](ClO4)2 complex: Antimicrobial, antibiofilm, and anticancer effects. The Microbe 2025, 7, 100307. doi:10.1016/j.microb.2025.100307
- Hill, A. G.; Castillo, M. C.; Bacsa, J.; Otte, K. S.; Soper, J. D. Redox-Active Ligands Permit Multielectron O2 Homolysis and O-Atom Transfer at Exceptionally High-Valent Vanadyl Complexes. Journal of the American Chemical Society 2025, 147, 13356–13369. doi:10.1021/jacs.4c18305
- Meloni, G.; Morgan, L.; Cappelletti, D.; Bevilacqua, M.; Graiff, C.; Pinter, P.; Biffis, A.; Tubaro, C.; Baron, M. Exploring the reductive CO2 fixation with amines and hydrosilanes using readily available Cu(II) NHC-phenolate catalyst precursors. Dalton transactions (Cambridge, England : 2003) 2024, 53, 18128–18140. doi:10.1039/d4dt02936d
- Holzmann, S. L.; Osterbrink, J.; Hübner, O.; Schulz, M.; Poddelskii, A.; Kaifer, E.; Himmel, H. Tuning of the Electronic Structure and Reactivity of Metal Complexes with Redox‐Active Guanidine Ligands. European Journal of Inorganic Chemistry 2024, 28. doi:10.1002/ejic.202400597
- Bhowmik, S.; Sengupta, A.; Mukherjee, R. Ni(II) and Pd(II) complexes of a new redox-active pentadentate azo-appended 2-aminophenol ligand: Pd(II)-assisted intraligand cyclization forms a phenoxazinyl ring. Dalton transactions (Cambridge, England : 2003) 2024, 53, 14046–14064. doi:10.1039/d4dt01513d
- Neshat, A.; Mousavizadeh Mobarakeh, A.; Yousefshahi, M. R.; Varmaghani, F.; Dusek, M.; Eigner, V.; Kucerakova, M. Introducing Novel Redox-Active Bis(phenolate) N-Heterocyclic Carbene Proligands: Investigation of Their Coordination to Fe(II)/Fe(III) and Their Catalytic Activity in Transfer Hydrogenation of Carbonyl Compounds. ACS omega 2024, 9, 25135–25145. doi:10.1021/acsomega.4c02602
- Fomenko, I. S.; Gongola, M. I.; Shul'pina, L. S.; Shul'pin, G. B.; Ikonnikov, N. S.; Kozlov, Y. N.; Gushchin, A. L. Copper(II) complexes with BIAN-type ligands: Synthesis and catalytic activity in oxidation of hydrocarbons and alcohols. Inorganica Chimica Acta 2024, 565, 121990. doi:10.1016/j.ica.2024.121990
- Pashanova, K. I.; Lazarev, N. M.; Zolotukhin, A. A.; Kovylina, T. A.; Petrov, B. I.; Piskunov, A. V. Thermal Behavior of the "α‐Diimine‐Ni II ‐Catecholate" Chromophores. ChemistrySelect 2024, 9. doi:10.1002/slct.202304536
- Eckhardt, R.; Reyes, D.; Sandoval‐Pauker, C.; Pinter, B. doi:10.1002/9783527830879.ch3
- Himmel, H. doi:10.1002/9783527830879.ch7
- Shinkar', E. V.; Smolyaninov, I. V.; Berberova, N. T. Metal Complexes with Redox-Active Ligands in the Indirect Electrosynthesis of Organic Sulfur Compounds. Russian Journal of Coordination Chemistry 2023, 49, S128–S158. doi:10.1134/s107032842360122x
- Haaf, S.; Engels, E.; Kaifer, E.; Himmel, H.-J. Hexaguanidino-Triptycenes and Triphenylenes: Electronic Coupling in Molecules Containing Three Redox-Active o-Diguanidinobenzene Units Connected either Directly or Interacting Through Homoconjugation. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 30, e202301903. doi:10.1002/chem.202301903
- Sasano, Y.; Iwabuchi, Y. 1.8 Copper-Catalyzed Aerobic Oxidation of Alcohols. Base-Metal Catalysis 1; Georg Thieme Verlag KG, 2023. doi:10.1055/sos-sd-238-00150
- Fomenko, I. S.; Gongola, M. I.; Shul'pina, L. S.; Shul'pin, G. B.; Ikonnikov, N. S.; Kozlov, Y. N.; Gushchin, A. L. Copper(Ii) Complexes with Bian-Type Ligands: Synthesis and Catalytic Activity in Oxidation of Hydrocarbons and Alcohols. Elsevier BV 2023. doi:10.2139/ssrn.4571131
- Bashir, M. A.; Wei, J.; Wang, H.; Zhong, F.; Zhai, H. Recent advances in catalytic oxidative reactions of phenols and naphthalenols. Organic Chemistry Frontiers 2022, 9, 5395–5413. doi:10.1039/d2qo00758d
- Gamboa-Ramirez, S.; Faure, B.; Réglier, M.; Simaan, A. J.; Orio, M. Computational Insights of Selective Intramolecular O-atom Transfer Mediated by Bioinspired Copper Complexes. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202202206. doi:10.1002/chem.202202206
- Lohmeyer, L.; Werr, M.; Kaifer, E.; Himmel, H.-J. Interplay and Competition Between Two Different Types of Redox-Active Ligands in Cobalt Complexes: How to Allocate the Electrons?. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202201789. doi:10.1002/chem.202201789