Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications

Nikita Brodyagin, Martins Katkevics, Venubabu Kotikam, Christopher A. Ryan and Eriks Rozners
Beilstein J. Org. Chem. 2021, 17, 1641–1688. https://doi.org/10.3762/bjoc.17.116

Cite the Following Article

Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications
Nikita Brodyagin, Martins Katkevics, Venubabu Kotikam, Christopher A. Ryan and Eriks Rozners
Beilstein J. Org. Chem. 2021, 17, 1641–1688. https://doi.org/10.3762/bjoc.17.116

How to Cite

Brodyagin, N.; Katkevics, M.; Kotikam, V.; Ryan, C. A.; Rozners, E. Beilstein J. Org. Chem. 2021, 17, 1641–1688. doi:10.3762/bjoc.17.116

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 10.7 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Everly, M. E.; Wieber, P. J.; Al Janabi, I.; Hrdlicka, P. J. An electrophoretic mobility shift assay with chemiluminescent readout to evaluate DNA-targeting oligonucleotide-based probes. PloS one 2025, 20, e0335674.
  • Everly, M. E.; Wieber, P. J.; Al Janabi, I.; Hrdlicka, P. J. An electrophoretic mobility shift assay with chemiluminescent readout to evaluate DNA-targeting oligonucleotide-based probes. PLOS One 2025, 20, e0335674. doi:10.1371/journal.pone.0335674
  • Everly, M. E.; Hrdlicka, P. J. Efficient and specific DNA-targeting using single-stranded LNA/MOE mixmers and chimeric Invader:XenoRNA probes. Organic & biomolecular chemistry 2025. doi:10.1039/d5ob01570g
  • Seo, J.-H.; Kim, Y.-J.; Jeon, W.-J.; Yoo, J.-S.; Moon, D.-C. Targeting carA Using Optimized Antisense Peptide Nucleic Acid-Cell-Penetrating Peptide Conjugates in Acinetobacter baumannii: A Novel Antibacterial Approach. International journal of molecular sciences 2025, 26, 9526. doi:10.3390/ijms26199526
  • Esenina, A. A.; Prohorov, I. A.; Severov, V. V.; Smirnov, I. P.; Luzyanin, T. A.; Kirillova, Y. G. The Significance of Oligomer C-Terminus Design in Solid-Phase Synthesis of Peptide Nucleic Acid Tetramers With the Incorporation of γ-S-Monomer Units Based on L-Glu. Journal of peptide science : an official publication of the European Peptide Society 2025, 31, e70061. doi:10.1002/psc.70061
  • Dalbanjan, N. P.; Korgaonkar, K.; Parvatkar, R.; Tilvi, S.; S.K., P. K. Bacterial peptide antibiotics: A comprehensive review on biosynthesis, mechanisms, and therapeutic potential. Next Research 2025, 2, 100850. doi:10.1016/j.nexres.2025.100850
  • Nazzal, H.; Yavin, E. Fmoc Solid-Phase FIT-PNA Synthesis-Manual and Automated Methodologies. Methods in molecular biology (Clifton, N.J.) 2025, 2934, 189–207. doi:10.1007/978-1-0716-4578-9_14
  • Lu, R.; Xi, K.; Lin, R.; Krishna, M. S.; Chen, Y.; Zhan, X.; Zeng, H.; Li, X.; Fan, S.; Zhou, H.; Wu, W.; Lian, Y.; Dai, Y.; Zhu, L.; Li, G.; Chen, G. Towards the Development of Isoenergetic Peptide Nucleic Acid Based Probes Targeting Double-Stranded RNAs Through Enhancing Sequence-Specific Stacking Interactions. Cold Spring Harbor Laboratory 2025. doi:10.1101/2025.06.28.662161
  • Yoon, Y.; Joo, N.-r.; Min, J.; Bae, D.; Lee, S.; Choi, Y. γ-Amino Carboxylic Acid Modification Enhances the Efficacy of PNAs Targeting miR-221-3p in A549 Cells. Cold Spring Harbor Laboratory 2025. doi:10.1101/2025.06.15.659802
  • Avitabile, C.; Cerasa, M. T.; D'Aniello, A.; Saviano, M.; Moccia, M. Recent Cutting-Edge Technologies for the Delivery of Peptide Nucleic Acid. Chemistry (Weinheim an der Bergstrasse, Germany) 2025, 31, e202500469. doi:10.1002/chem.202500469
  • Watson, E. E. Strategies for the optimisation of troublesome peptide nucleic acid (PNA) sequences. Organic & biomolecular chemistry 2025. doi:10.1039/d5ob00589b
  • Tessier, B. R.; Rozners, E. 2-Aminopyridine nucleobases enable DNA invasion by peptide nucleic acid clamps under physiological conditions. Chemical communications (Cambridge, England) 2025, 61, 4070–4073. doi:10.1039/d4cc06748g
  • Ramírez-Cortés, F.; Ménová, P. Hepatocyte targeting via the asialoglycoprotein receptor. RSC medicinal chemistry 2025, 16, 525–544. doi:10.1039/d4md00652f
  • Everly, M. E.; Emehiser, R. G.; Hrdlicka, P. J. Recognition of mixed-sequence double-stranded DNA regions using chimeric Invader/LNA probes. Organic & biomolecular chemistry 2025, 23, 619–628. doi:10.1039/d4ob01403k
  • Sannigrahi, A.; De, N.; Bhunia, D.; Bhadra, J. Peptide nucleic acids: Recent advancements and future opportunities in biomedical applications. Bioorganic chemistry 2025, 155, 108146. doi:10.1016/j.bioorg.2025.108146
  • Hu, Y.-Q.; Liu, K.; Lai, L.-Q.; He, Y.-R.; Hong, L.-P.; Jiang, C.-Q.; Liu, S.-M.; Cao, M.-Z. Evaluation of the diagnostic efficiency of fluorescence in situ hybridization for pulmonary tuberculosis: a systematic review and meta-analysis. Frontiers in medicine 2025, 11, 1467530. doi:10.3389/fmed.2024.1467530
  • Farshineh Saei, S.; Baskevics, V.; Katkevics, M.; Rozners, E. Recognition of Noncanonical RNA Base Pairs Using Triplex-Forming Peptide Nucleic Acids. ACS chemical biology 2024, 20, 179–185. doi:10.1021/acschembio.4c00662
  • Giancola, J. B.; Raines, R. T. Endosomolytic peptides enable the cellular delivery of peptide nucleic acids. Chemical communications (Cambridge, England) 2024, 60, 15019–15022. doi:10.1039/d4cc05214e
  • Kedir, W. M.; Li, L.; Tan, Y. S.; Bajalovic, N.; Loke, D. K. Nanomaterials and methods for cancer therapy: 2D materials, biomolecules, and molecular dynamics simulations. Journal of materials chemistry. B 2024, 12, 12141–12173. doi:10.1039/d4tb01667j
  • Kim, M.; Hwang, H.; Kim, Y.-T.; Hong, I. S. Atom-Economical and Environmentally Friendly Bts-Based Purine PNA Monomers without Base-Protecting Groups. Organic Process Research & Development 2024, 28, 4492–4500. doi:10.1021/acs.oprd.4c00413

Patents

  • MAHFOUZ MAGDY MAHMOUD; MARSIC TIN; GUNDRA SIVAKRISHNA; MAHAS AHMED. METHODS AND COMPOSITIONS COMPRISING PROKARYOTIC ARGONAUTE AND PNA. WO 2024241203 A1, Nov 28, 2024.
Other Beilstein-Institut Open Science Activities