Cite the Following Article
Clauson–Kaas pyrrole synthesis using diverse catalysts: a transition from conventional to greener approach
Dileep Kumar Singh and Rajesh Kumar
Beilstein J. Org. Chem. 2023, 19, 928–955.
https://doi.org/10.3762/bjoc.19.71
How to Cite
Singh, D. K.; Kumar, R. Beilstein J. Org. Chem. 2023, 19, 928–955. doi:10.3762/bjoc.19.71
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 9.2 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Chen, H.-W.; Liu, W.-H.; Chang, C.-H.; Shie, J.-J. Molecular Editing of 5-Alkynyl-1,2,3-triazines via a Silver-Mediated Skeletal Remodeling Approach: Solvent-Controlled Switchable Synthesis of Functionalized Pyrroles and Furans. The Journal of organic chemistry 2025, 90, 15191–15203. doi:10.1021/acs.joc.5c01536
- Fedotov, V. V.; Aminov, S. V.; Neymash, A. O.; Gazizov, D. A.; Kultyshev, A. S.; Eltsov, O. S.; Slepukhin, P. A.; Ulomskiy, E. N.; Rusinov, V. L. Synthesis of 6-(1H-Pyrrol-1-yl)azolo[1,5-a]pyrimidin-7-amines by the Clauson–Kaas Reaction. Russian Journal of Organic Chemistry 2025, 61, 660–668. doi:10.1134/s1070428025601062
- Dewangan, C.; Sarmah, S.; Natte, K. Nickel‐Catalyzed Synthesis of Structurally Diverse N‐(hetero)aryl Pyrroles. Asian Journal of Organic Chemistry 2025, 14. doi:10.1002/ajoc.202500195
- Kumar, R.; Wani, T. H.; Ali, R. The Piloty-Robinson Reaction: A Versatile Tool for the Synthesis of 3,4-Disubstituted Pyrroles. Polycyclic Aromatic Compounds 2025, 45, 1853–1873. doi:10.1080/10406638.2025.2509695
- Hasan, A.; Rather, I. A.; Ali, R. Synthesis and Appraisal of Anion‐Binding Studies in One‐Walled Meso ‐Superpyrrolyl‐Extended Calix[4]Pyrroles. ChemistrySelect 2025, 10. doi:10.1002/slct.202501518
- Vaishali; Sharma, S.; Jain, P.; Thakur, A.; Gomha, S. M.; Rani, S. Ionic liquid-assisted synthesis of pyrrole derivative: a green and sustainable method. Australian Journal of Chemistry 2025, 78, NULL. doi:10.1071/ch25002
- Arteaga Giraldo, J. J.; Söhnel, T.; Kilmartin, P. A.; Sperry, J. Electrochemical oxidation–cyclocondensation of chitin-derived 3-acetamido-5-acetylfuran (3A5AF) for the synthesis of 3-acetyl-4-acetamidopyrrolin-2-ones. Green Chemistry 2025, 27, 4259–4266. doi:10.1039/d4gc06067a
- Daghmoum, M.; Sabat, N.; Lecoq, M.; Viraize, T.; Guinchard, X. Merging Au(I)-Catalysis and Biocatalysis: Practical and Scalable Synthesis of Chiral Amino Building Blocks from Alkynes. ACS Catalysis 2025, 15, 2484–2491. doi:10.1021/acscatal.4c07259
- Chakraborty, S.; Singha Mohapatra, A.; Saha, S.; Mandal, S.; Paul, N. D. Ligand Assisted Co(II)-Catalyzed Multicomponent Synthesis of Substituted Pyrroles and Pyridines. Chemistry, an Asian journal 2025, 20, e202401038. doi:10.1002/asia.202401038
- Huang, B. Photo- and electro-chemical synthesis of substituted pyrroles. Green Chemistry 2024, 26, 11773–11796. doi:10.1039/d4gc04495a
- Yadav, R.; Sanduja, M.; Kumar, V.; Sharma, K.; Khan, S.; Kumar, K. Microwave‐Assisted Synthetic Pathways of Pyrrole: A Comprehensive Review. Asian Journal of Organic Chemistry 2024, 13. doi:10.1002/ajoc.202400401
- Wang, F.; Bai, Y.; Berdimurodov, E.; Zhang, T.; Bai, R.; Li, M.; Zhang, J.; Gu, Y. Efficient synthesis of aza-arenes with multiple basic sites enhanced by protonation process. Molecular Catalysis 2024, 568, 114488. doi:10.1016/j.mcat.2024.114488
- Singh, P.; Singh, A.; Singh, D. K.; Nath, M. Applications of Clauson-Kaas Reaction in Organic Synthesis. Chemical record (New York, N.Y.) 2024, 24, e202400112. doi:10.1002/tcr.202400112
- Singh, D. K.; Iqbal, H.; Ansari, M. A. Recent Progress in the Synthesis and Biological Assessment of Benzimidazole-1,2,3- Triazole Hybrids. Current Organic Chemistry 2024, 28, 733–756. doi:10.2174/0113852728303189240321084818
- Mateev, E.; Irfan, A.; Mateeva, A.; Georgieva, M.; Zlatkov, A. Microwave-assisted organic synthesis of pyrroles (Review). Pharmacia 2024, 71, 1–10. doi:10.3897/pharmacia.71.e119866
- Frasca, S.; Galkin, M.; Stro Mme, M.; Lindh, J.; Gising, J. Toward Biomass-Based Organic Electronics: Continuous Flow Synthesis and Electropolymerization of N-Substituted Pyrroles. ACS omega 2024, 9, 13852–13859. doi:10.1021/acsomega.3c08739
- Shan, C.; Lopchuk, J. M. Five-membered ring systems: Pyrroles and benzo analogs. Progress in Heterocyclic Chemistry; Elsevier, 2024; pp 123–173. doi:10.1016/b978-0-443-33494-8.00005-6
- Qin, Y.; Cao, P.; Parmar, V. S.; Liu, Y.; Gao, C.; Liu, K. The quantitative pyrrole protection of l-phenylalanine/l-phenylalaninol in aqueous media and rationally updating the mechanisms of the Clauson-Kaas reaction through DFT study. RSC advances 2023, 13, 35825–35830. doi:10.1039/d3ra06595b
- Turna, G. C.; Cassol, R. R.; Luz, F. M.; Martins, M. A.; Zanatta, N.; Iglesias, B. A.; Bonacorso, H. G. Luminescent pyrrolyl-pyrimidine hybrids: Synthesis, structural characterization and photophysical evaluation. Journal of Molecular Structure 1352, 144502. doi:10.1016/j.molstruc.2025.144502
Patents
- JAIN CHITVAN; VAIDHYANATHAN RAMANATHAN. KNITTING THE LAYERS OF TWO-DIMENSIONAL COVALENT ORGANIC FRAMEWORK WITH ONE-DIMENSIONAL POLYMER TO MAKE CONDUCTING QUASI-THREE-DIMENSIONAL ARCHITECTURE. WO 2025041091 A1, Feb 27, 2025.