Triple-channel microreactor for biphasic gas–liquid reactions: Photosensitized oxygenations

Ram Awatar Maurya, Chan Pil Park and Dong-Pyo Kim
Beilstein J. Org. Chem. 2011, 7, 1158–1163. https://doi.org/10.3762/bjoc.7.134

Supporting Information

Supporting Information File 1: Experimental section, analytical data and fabrication of the triple-channel microreactor.
Format: PDF Size: 245.6 KB Download

Cite the Following Article

Triple-channel microreactor for biphasic gas–liquid reactions: Photosensitized oxygenations
Ram Awatar Maurya, Chan Pil Park and Dong-Pyo Kim
Beilstein J. Org. Chem. 2011, 7, 1158–1163. https://doi.org/10.3762/bjoc.7.134

How to Cite

Maurya, R. A.; Park, C. P.; Kim, D.-P. Beilstein J. Org. Chem. 2011, 7, 1158–1163. doi:10.3762/bjoc.7.134

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Gagan, S.; Sarang, K.; Rudzinski, K. J.; Liu, R.; Szmigielski, R.; Zhang, Y. Synthetic strategies for oxidation products from biogenic volatile organic compounds in the atmosphere: A review. Atmospheric Environment 2023, 312, 120017. doi:10.1016/j.atmosenv.2023.120017
  • Filipović, A.; Džambaski, Z.; Bondžić, A. M.; Bondžić, B. P. Visible-light promoted photoredox catalysis in flow: addition of biologically important α‑amino radicals to michael acceptors. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology 2023, 22, 2259–2270. doi:10.1007/s43630-023-00448-8
  • Hermens, J. G. H.; Lepage, M. L.; Kloekhorst, A.; Keller, E.; Bloem, R.; Meijer, M.; Feringa, B. L. Development of a modular photoreactor for the upscaling of continuous flow photochemistry. Reaction chemistry & engineering 2022, 7, 2280–2284. doi:10.1039/d2re00310d
  • Liu, L.; Wang, N.; Wan, L.; Zhao, C.; Niu, K.; Lyu, D.; Liao, Z.; Shui, B. A Comparative Study on Optofluidic Fenton Microreactors Integrated with Fe-Based Materials for Water Treatment. Micromachines 2022, 13, 1125. doi:10.3390/mi13071125
  • Wan, L.; Jiang, M.; Cheng, D.; Liu, M.; Chen, F. Continuous flow technology-a tool for safer oxidation chemistry. Reaction Chemistry & Engineering 2022, 7, 490–550. doi:10.1039/d1re00520k
  • Bordier, C.; Escande, V.; Darcel, C. Past and current routes to β-hydroperoxy alcohols: A functional group with high potential in organic synthesis. Tetrahedron 2021, 97, 132379. doi:10.1016/j.tet.2021.132379
  • Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S. D. A.; Noël, T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical reviews 2021, 122, 2752–2906. doi:10.1021/acs.chemrev.1c00332
  • Neyt, N. C.; Riley, D. L. Application of reactor engineering concepts in continuous flow chemistry: a review. Reaction Chemistry & Engineering 2021, 6, 1295–1326. doi:10.1039/d1re00004g
  • Louvel, D.; De Dios Miguel, T.; Vu, N. D.; Duguet, N. The Chemistry of β-Hydroxy Hydroperoxides. European Journal of Organic Chemistry 2021, 2021, 2990–3014. doi:10.1002/ejoc.202100343
  • Gambacorta, G.; Sharley, J. S.; Baxendale, I. R. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein journal of organic chemistry 2021, 17, 1181–1312. doi:10.3762/bjoc.17.90
  • Patel, R. I.; Sharma, A.; Sharma, S.; Sharma, A. Visible light-mediated applications of methylene blue in organic synthesis. Organic Chemistry Frontiers 2021, 8, 1694–1718. doi:10.1039/d0qo01182g
  • Filipović, A.; Džambaski, Z.; Vasiljević-Radović, D.; Bondžić, B. P. Visible light promoted photoredox C(sp3)-H bond functionalization of tetrahydroisoquinolines in flow. Organic & biomolecular chemistry 2021, 19, 2668–2675. doi:10.1039/d0ob02582h
  • Hone, C. A.; Kappe, C. O. Membrane Microreactors for the On-Demand Generation, Separation, and Reaction of Gases. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 13108–13117. doi:10.1002/chem.202001942
  • Malakar, P.; Deb, A. R.; Goodine, T.; Robertson, M. J.; Oelgemöller, M. CHAPTER 7:Continuous-flow Photooxygenations: An Advantageous and Sustainable Oxidation Methodology with a Bright Future. Catalytic Aerobic Oxidations; The Royal Society of Chemistry, 2020; pp 181–251. doi:10.1039/9781839160332-00181
  • Fang, T.; Lakey, P. S. J.; Rivera-Rios, J. C.; Keutsch, F. N.; Shiraiwa, M. Aqueous-Phase Decomposition of Isoprene Hydroxy Hydroperoxide and Hydroxyl Radical Formation by Fenton-like Reactions with Iron Ions. The journal of physical chemistry. A 2020, 124, 5230–5236. doi:10.1021/acs.jpca.0c02094
  • Lanteri, D.; Quattrosoldi, S.; Soccio, M.; Basso, A.; Cavallo, D.; Munari, A.; Riva, R.; Lotti, N.; Moni, L. Regioselective Photooxidation of Citronellol: A Way to Monomers for Functionalized Bio-Polyesters. Frontiers in chemistry 2020, 8, 85. doi:10.3389/fchem.2020.00085
  • Lee, D. S.; Sharabi, M.; Jefferson-Loveday, R.; Pickering, S. J.; Poliakoff, M.; George, M. W. Scalable Continuous Vortex Reactor for Gram to Kilo Scale for UV and Visible Photochemistry. Organic Process Research & Development 2020, 24, 201–206. doi:10.1021/acs.oprd.9b00475
  • Hamami, Z. E.; Vanoye, L.; Fongarland, P.; de Bellefon, C.; Favre-Réguillon, A. Improved Reactor Productivity for the Safe Photo‐Oxidation of Citronellol Under Visible Light LED Irradiation. ChemPhotoChem 2019, 3, 122–128. doi:10.1002/cptc.201800201
  • Hone, C. A.; Kappe, C. O. The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow. Topics in current chemistry (Cham) 2018, 377, 2. doi:10.1007/s41061-018-0226-z
  • Ramanjaneyulu, B. T.; Vishwakarma, N. K.; Vidyacharan, S.; Adiyala, P. R.; Kim, D.-P. Towards Versatile Continuous‐Flow Chemistry and Process Technology Via New Conceptual Microreactor Systems. Bulletin of the Korean Chemical Society 2018, 39, 757–772. doi:10.1002/bkcs.11467
Other Beilstein-Institut Open Science Activities