The intriguing modeling of cis–trans selectivity in ruthenium-catalyzed olefin metathesis

Naeimeh Bahri-Laleh, Raffaele Credendino and Luigi Cavallo
Beilstein J. Org. Chem. 2011, 7, 40–45. https://doi.org/10.3762/bjoc.7.7

Cite the Following Article

The intriguing modeling of cis–trans selectivity in ruthenium-catalyzed olefin metathesis
Naeimeh Bahri-Laleh, Raffaele Credendino and Luigi Cavallo
Beilstein J. Org. Chem. 2011, 7, 40–45. https://doi.org/10.3762/bjoc.7.7

How to Cite

Bahri-Laleh, N.; Credendino, R.; Cavallo, L. Beilstein J. Org. Chem. 2011, 7, 40–45. doi:10.3762/bjoc.7.7

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Martínez, J. P.; Trzaskowski, B. An Anthracene-Thiolate-Ligated Ruthenium Complex: Computational Insights into Z-Stereoselective Cross Metathesis. The journal of physical chemistry. A 2023, 127, 9465–9472. doi:10.1021/acs.jpca.3c05021
  • Freindorf, M.; Kraka, E. Looking behind the scenes of Grubbs catalysis with the Unified Reaction Valley Approach. Chemical Reactivity; Elsevier, 2023; pp 301–346. doi:10.1016/b978-0-32-390257-1.00017-6
  • Pump, E.; Poater, A.; Bahri-Laleh, N.; Credendino, R.; Serra, L.; Scarano, V.; Cavallo, L. Regio, stereo and chemoselectivity of 2nd generation Grubbs ruthenium-catalyzed olefin metathesis. Catalysis Today 2022, 388-389, 394–402. doi:10.1016/j.cattod.2020.04.071
  • Martínez, J. P.; Trzaskowski, B. Olefin Metathesis Catalyzed by a Hoveyda-Grubbs-like Complex Chelated to Bis(2-mercaptoimidazolyl) Methane: A Predictive DFT Study. The journal of physical chemistry. A 2022, 126, 720–732. doi:10.1021/acs.jpca.1c09336
  • Reim, I.; Occhipinti, G.; Törnroos, K. W.; Fogg, D. E.; Jensen, V. R. Toward E-selective Olefin Metathesis: Computational Design and Experimental Realization of Ruthenium Thio-Indolate Catalysts. Topics in Catalysis 2021, 65, 448–461. doi:10.1007/s11244-021-01468-3
  • Reim, I.; Occhipinti, G.; Törnroos, K. W.; Fogg, D. E.; Jensen, V. R. Toward E-selective Olefin Metathesis: Computational Design and Experimental Realization of Ruthenium Thio-Indolate Catalysts. Topics in Catalysis 2021, 1–14.
  • Patra, S. G.; Das, N. K. Recent advancement on the mechanism of olefin metathesis by Grubbs catalysts: A computational perspective. Polyhedron 2021, 200, 115096. doi:10.1016/j.poly.2021.115096
  • Nowalk, J. A.; Fang, C.; Short, A. L.; Weiss, R. M.; Swisher, J. H.; Liu, P.; Meyer, T. Y. Sequence-Controlled Polymers Through Entropy-Driven Ring-Opening Metathesis Polymerization: Theory, Molecular Weight Control, and Monomer Design. Journal of the American Chemical Society 2019, 141, 5741–5752. doi:10.1021/jacs.8b13120
  • Kędziorek, M.; Grela, K. doi:10.1002/9783527651733.ch24
  • Quigley, B. L.; Grubbs, R. H. Ligand Design in Metal Chemistry - Catalyst Structure and Cis–Trans Selectivity in Ruthenium‐based Olefin Metathesis. Ligand Design in Metal Chemistry; Wiley, 2016; pp 15–45. doi:10.1002/9781118839621.ch2
  • Torker, S.; Koh, M. J.; Khan, R. K. M.; Hoveyda, A. H. Regarding a Persisting Puzzle in Olefin Metathesis with Ru Complexes: Why are Transformations of Alkenes with a Small Substituent Z-Selective?. Organometallics 2016, 35, 543–562. doi:10.1021/acs.organomet.5b00970
  • Zago, E.; Dubreucq, E.; Lecomte, J.; Villeneuve, P.; Fine, F.; Fulcrand, H.; Aouf, C. Synthesis of bio-based epoxy monomers from natural allyl- and vinyl phenols and the estimation of their affinity to the estrogen receptor α by molecular docking. New Journal of Chemistry 2016, 40, 7701–7710. doi:10.1039/c6nj00782a
  • Motta, A.; Szeto, K. C.; Taoufik, M.; Nicholas, C. P. Energetic pathways and influence of the metallacyclobutane intermediates formed during isobutene/2-butene cross-metathesis over WH3/Al2O3 supported catalyst. Catalysis Science & Technology 2016, 6, 3386–3393. doi:10.1039/c5cy02154e
  • Zhu, B.-L.; Pang, X.-Y.; Wang, G.-C. Reaction mechanism and Z-selectivity for chelated Ru-catalyzed AROCM of endic anhydride and propene: A DFT study. International Journal of Quantum Chemistry 2015, 116, 35–41. doi:10.1002/qua.25033
  • Liu, P.; Taylor, B. L. H.; Garcia‐Lopez, J.; Houk, K. N. Handbook of Metathesis; Wiley, 2015; pp 199–252. doi:10.1002/9783527674107.ch7
  • de Brito Sá, É.; de Matos, J. M. E. Ring closing metathesis by Hoveyda–Grubbs catalysts: A theoretical approach of some aspects of the initiation mechanism and the influence of solvent. Inorganica Chimica Acta 2015, 426, 20–28. doi:10.1016/j.ica.2014.11.007
  • Naeimeh, B. L.; Laura, F.; Luigi, C.
  • Marx, F. T. I.; Jordaan, J. H. L.; Lachmann, G.; Vosloo, H. C. A molecular modeling study of the changes of some steric properties of the precatalysts during the olefin metathesis reaction. Journal of computational chemistry 2014, 35, 1457–1463. doi:10.1002/jcc.23641
  • Poater, A.; Falivene, L.; Cavallo, L. Olefin Metathesis; Wiley, 2014; pp 483–494. doi:10.1002/9781118711613.ch19
  • Occhipinti, G.; Koudriavtsev, V.; Törnroos, K. W.; Jensen, V. R. Theory-assisted development of a robust and Z-selective olefin metathesis catalyst. Dalton transactions (Cambridge, England : 2003) 2014, 43, 11106–11117. doi:10.1039/c4dt00409d

Patents

  • WANG HAIBO; BOND RISHA L. 1,3-FATTY DIOL COMPOUNDS AND DERIVATIVES THEREOF. EP 4223765 A1, Aug 9, 2023.
  • WANG HAIBO. 1,3-FATTY DIOL COMPOUNDS AND GLYCOSYLATED DERIVATIVES THEREOF. EP 3795576 A1, March 24, 2021.
  • HOVEYDA AMIR H; KHAN R KASHIF M; TORKER SEBASTIAN; KOH MING JOO. Catalysts for efficient Z-selective metathesis. US 9938253 B2, April 10, 2018.
  • WANG HAIBO. 1,3-FATTY DIOL COMPOUNDS AND DERIVATIVES THEREOF. WO 2018053202 A1, March 22, 2018.
  • JENSEN VIDAR R; OCCHIPINTI GIOVANNI; HANSEN FREDERIK ROSBERG. NOVEL OLEFIN METATHESIS CATALYSTS. WO 2012032131 A1, March 15, 2012.
Other Beilstein-Institut Open Science Activities