Impact of cyclodextrins on the behavior of amphiphilic ligands in aqueous organometallic catalysis

Hervé Bricout, Estelle Léonard, Christophe Len, David Landy, Frédéric Hapiot and Eric Monflier
Beilstein J. Org. Chem. 2012, 8, 1479–1484. https://doi.org/10.3762/bjoc.8.167

Supporting Information

Supporting Information File 1: Experimental procedures and characterization of the supramolecular complexes.
Format: PDF Size: 1.2 MB Download

Cite the Following Article

Impact of cyclodextrins on the behavior of amphiphilic ligands in aqueous organometallic catalysis
Hervé Bricout, Estelle Léonard, Christophe Len, David Landy, Frédéric Hapiot and Eric Monflier
Beilstein J. Org. Chem. 2012, 8, 1479–1484. https://doi.org/10.3762/bjoc.8.167

How to Cite

Bricout, H.; Léonard, E.; Len, C.; Landy, D.; Hapiot, F.; Monflier, E. Beilstein J. Org. Chem. 2012, 8, 1479–1484. doi:10.3762/bjoc.8.167

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Léonard, E.; Fayeulle, A. Azo-Dyes-Grafted Oligosaccharides-From Synthesis to Applications. Molecules (Basel, Switzerland) 2021, 26, 3063. doi:10.3390/molecules26113063
  • Freixa, Z. Photoswitchable catalysis using organometallic complexes. Catalysis Science & Technology 2020, 10, 3122–3139. doi:10.1039/d0cy00431f
  • Grachev, M. K.; Kurochkina, G. I.; Popkov, A. V. The features of synthesis and chemical behavior of some silicon-containing cyclodextrin derivatives. Russian Chemical Bulletin 2019, 68, 708–716. doi:10.1007/s11172-019-2477-4
  • Warmeling, H.; Janz, D.; Peters, M.; Vorholt, A. J. Acceleration of lean aqueous hydroformylation in an innovative jet loop reactor concept. Chemical Engineering Journal 2017, 330, 585–595. doi:10.1016/j.cej.2017.07.152
  • Ramón, R. S.; Nolan, S. P.; Börner, A.; Jackstell, R.; Hapiot, F.; Monflier, E.; Schwarze, M.; Schomäcker, R.; Bergbreiter, D. E.; Pilarski, L. T.; Szabó, K. J.; Kourist, R.; Bornscheuer, U. T. doi:10.1002/9783527651733.ch11
  • Warmeling, H.; Hafki, D.; von Söhnen, T.; Vorholt, A. J. Kinetic investigation of lean aqueous hydroformylation – An engineer’s view on homogeneous catalysis. Chemical Engineering Journal 2017, 326, 298–307. doi:10.1016/j.cej.2017.05.062
  • Grachev, M. K.; Popkov, A. V.; Levina, I. I.; Kurochkina, G. I. Silylation of 2-hydroxypropyl-β-cyclodextrin. Russian Journal of General Chemistry 2017, 87, 1536–1541. doi:10.1134/s1070363217070155
  • Hapiot, F.; Monflier, E. Unconventional Approaches Involving Cyclodextrin-Based, Self-Assembly-Driven Processes for the Conversion of Organic Substrates in Aqueous Biphasic Catalysis. Catalysts 2017, 7, 173. doi:10.3390/catal7060173
  • Warmeling, H.; Koske, R.; Vorholt, A. J. Procedural Rate Enhancement of Lean Aqueous Hydroformylation of 1-Octene without Additives. Chemical Engineering & Technology 2016, 40, 186–195. doi:10.1002/ceat.201600383
  • Normand, A. T.; Daniliuc, C. G.; Kehr, G.; Le Gendre, P.; Erker, G. Direct P-functionalization of azobenzene by a cationic phosphidozirconocene complex. Dalton transactions (Cambridge, England : 2003) 2016, 45, 3711–3714. doi:10.1039/c6dt00416d
  • Vanbesien, T.; Sayede, A.; Monflier, E.; Hapiot, F. A self-emulsifying catalytic system for the aqueous biphasic hydroformylation of triglycerides. Catalysis Science & Technology 2016, 6, 3064–3073. doi:10.1039/c5cy01758k
  • Léonard, E.; Mangin, F.; Villette, C.; Billamboz, M.; Len, C. Azobenzenes and catalysis. Catalysis Science & Technology 2016, 6, 379–398. doi:10.1039/c4cy01597e
  • Hapiot, F.; Menuel, S.; Bricout, H.; Tilloy, S.; Monflier, E. Recent developments in cyclodextrin-mediated aqueous biphasic hydroformylation and tsuji–trost reactions. Applied Organometallic Chemistry 2015, 29, 580–587. doi:10.1002/aoc.3340
  • Mangin, F.; Banaszak-Léonard, E.; Len, C. One-step Barton decarboxylation by micellar catalysis – application to the synthesis of maleimide derivatives. RSC Advances 2015, 5, 69616–69620. doi:10.1039/c5ra12583a
  • Potier, J.; Menuel, S.; Monflier, E.; Hapiot, F. Synergetic Effect of Randomly Methylated β-Cyclodextrin and a Supramolecular Hydrogel in Rh-Catalyzed Hydroformylation of Higher Olefins. ACS Catalysis 2014, 4, 2342–2346. doi:10.1021/cs5004883
  • Hapiot, F.; Bricout, H.; Menuel, S.; Tilloy, S.; Monflier, E. Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Catalysis Science & Technology 2014, 4, 1899–1908. doi:10.1039/c4cy00005f
  • Kairouz, V.; Schmitzer, A. R. Imidazolium-functionalized β-cyclodextrin as a highly recyclable multifunctional ligand in water. Green Chem. 2014, 16, 3117–3124. doi:10.1039/c4gc00365a
  • Billamboz, M.; Mangin, F.; Drillaud, N.; Chevrin-Villette, C.; Banaszak-Léonard, E.; Len, C. Micellar catalysis using a photochromic surfactant: application to the Pd-catalyzed Tsuji-Trost reaction in water. The Journal of organic chemistry 2013, 79, 493–500. doi:10.1021/jo401737t
  • Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chemical Society reviews 2013, 43, 1734–1787. doi:10.1039/c3cs60037h
  • Salim, S.; Hassan, A. doi:10.7939/r3sx64j5t
Other Beilstein-Institut Open Science Activities