Supramolecular hydrogels formed from poly(viologen) cross-linked with cyclodextrin dimers and their physical properties

Yoshinori Takashima, Yang Yuting, Miyuki Otsubo, Hiroyasu Yamaguchi and Akira Harada
Beilstein J. Org. Chem. 2012, 8, 1594–1600.

Supporting Information

Supporting Information File 1: Additional information and 1H NMR spectra of all new compounds.
Format: PDF Size: 438.1 KB Download

Cite the Following Article

Supramolecular hydrogels formed from poly(viologen) cross-linked with cyclodextrin dimers and their physical properties
Yoshinori Takashima, Yang Yuting, Miyuki Otsubo, Hiroyasu Yamaguchi and Akira Harada
Beilstein J. Org. Chem. 2012, 8, 1594–1600.

How to Cite

Takashima, Y.; Yuting, Y.; Otsubo, M.; Yamaguchi, H.; Harada, A. Beilstein J. Org. Chem. 2012, 8, 1594–1600. doi:10.3762/bjoc.8.182

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Konishi, S.; Kashiwagi, Y.; Watanabe, G.; Osaki, M.; Katashima, T.; Urakawa, O.; Inoue, T.; Yamaguchi, H.; Harada, A.; Takashima, Y. Design and mechanical properties of supramolecular polymeric materials based on host–guest interactions: the relation between relaxation time and fracture energy. Polymer Chemistry 2020, 11, 6811–6820. doi:10.1039/d0py01347a
  • Löwenberg, C.; Tripodo, G.; Julich-Gruner, K. K.; Neffe, A. T.; Lendlein, A. Supramolecular Gelatin Networks Based on Inclusion Complexes. Macromolecular bioscience 2020, 20, 2000221. doi:10.1002/mabi.202000221
  • Kim, Y.; Jeong, D.; Shinde, V. V.; Hu, Y.; Kim, C.; Jung, S. Azobenzene-grafted carboxymethyl cellulose hydrogels with photo-switchable, reduction-responsive and self-healing properties for a controlled drug release system. International journal of biological macromolecules 2020, 163, 824–832. doi:10.1016/j.ijbiomac.2020.07.071
  • Grachev, M. K.; Terekhova, I. V.; Shipilov, D. A.; Kutyasheva, N. V.; Emelianova, E. Y. Dimeric (Oligomeric) Derivatives of Cyclodextrins as a New Class of Supramolecular Systems: Their Synthesis and Inclusion Complexes. Russian Journal of Bioorganic Chemistry 2020, 46, 14–31. doi:10.1134/s1068162020010021
  • Delawder, A. O.; Natraj, A.; Colley, N. D.; Saak, T.; Greene, A. F.; Barnes, J. C. Synthesis, self-assembly, and photomechanical actuator performance of a sequence-defined polyviologen crosslinker. Supramolecular Chemistry 2019, 31, 523–531. doi:10.1080/10610278.2019.1632453
  • Fedorova, O. A.; Chernikova, E. Y.; Tkachenko, S. V.; Grachev, A. I.; Godovikov, I. A.; Fedorov, Y. V. Self-sorting processes in a stimuli-responsive supramolecular systems based on cucurbituril, cyclodextrin and bisstyryl guests. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2019, 94, 201–210. doi:10.1007/s10847-019-00900-2
  • Ikhe, A. B.; Naveen, N.; Sohn, K.-S.; Pyo, M. Polyviologen as a high energy density cathode in magnesium-ion batteries. Electrochimica Acta 2018, 283, 393–400. doi:10.1016/j.electacta.2018.06.142
  • Jia, Y.-G.; Zhang, M.; Zhu, X. X. CO2-Switchable Self-Healing Host–Guest Hydrogels. Macromolecules 2017, 50, 9696–9701. doi:10.1021/acs.macromol.7b02163
  • Koyanagi, K.; Takashima, Y.; Yamaguchi, H.; Harada, A. Movable Cross-Linked Polymeric Materials from Bulk Polymerization of Reactive Polyrotaxane Cross-Linker with Acrylate Monomers. Macromolecules 2017, 50, 5695–5700. doi:10.1021/acs.macromol.7b00797
  • Reis, V. S.; Santos, E. S.; Bonsolhos, D. N.; Guimarães, L.; De Almeida, W. B.; Nascimento, C. S. Theoretical study on the formation process of Cross-Linked β-Cyclodextrin molecular tubes. Chemical Physics Letters 2017, 677, 13–18. doi:10.1016/j.cplett.2017.03.078
  • Branná, P.; Černochová, J.; Rouchal, M.; Kulhánek, P.; Babinský, M.; Marek, R.; Nečas, M.; Kuřitka, I.; Vícha, R. Cooperative Binding of Cucurbit[n]urils and β-Cyclodextrin to Heteroditopic Imidazolium-Based Guests. The Journal of organic chemistry 2016, 81, 9595–9604. doi:10.1021/acs.joc.6b01564
  • Karim, A. A.; Loh, X. J. CHAPTER 9:Towards Cyclodextrin-Based Supramolecular Materials. Polymers for Personal Care Products and Cosmetics; The Royal Society of Chemistry, 2016; pp 154–177. doi:10.1039/9781782623984-00154
  • Zhidkova, M.; Birin, K. P.; Laurinavichyute, V. K.; Pugolovkin, L. V.; Kotov, V. Y. Ionic interactions in the oligoviologens–K4Fe(CN)6 system. Journal of Electroanalytical Chemistry 2016, 773, 47–52. doi:10.1016/j.jelechem.2016.04.039
  • Wang, Z.; Tsarevsky, N. V. Well-defined polymers containing a single mid-chain viologen group: synthesis, environment-sensitive fluorescence, and redox activity. Polymer Chemistry 2016, 7, 4402–4410. doi:10.1039/c6py00628k
  • Kato, K.; Okabe, Y.; Okazumi, Y.; Ito, K. A significant impact of host-guest stoichiometry on the extensibility of polyrotaxane gels. Chemical communications (Cambridge, England) 2015, 51, 16180–16183. doi:10.1039/c5cc07122d
  • Kulkarni, S. G.; Prucková, Z.; Rouchal, M.; Dastychová, L.; Vícha, R. Adamantylated trisimidazolium-based tritopic guests and their binding properties towards cucurbit[7]uril and β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2015, 84, 11–20. doi:10.1007/s10847-015-0577-9
  • Harvey, D. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. Mass spectrometry reviews 2015, 36, 255–422. doi:10.1002/mas.21471
  • Yao, M.; Sano, H.; Ando, H.; Kiyobayashi, T. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier. Scientific reports 2015, 5, 10962. doi:10.1038/srep10962
  • Saboktakin, M. R.; Tabatabaei, R. M. Supramolecular hydrogels as drug delivery systems. International journal of biological macromolecules 2015, 75, 426–436. doi:10.1016/j.ijbiomac.2015.02.006
  • Arunachalam, M.; Gibson, H. W. Recent developments in polypseudorotaxanes and polyrotaxanes. Progress in Polymer Science 2014, 39, 1043–1073. doi:10.1016/j.progpolymsci.2013.11.005
Other Beilstein-Institut Open Science Activities