2-Allylphenyl glycosides as complementary building blocks for oligosaccharide and glycoconjugate synthesis

Hemali D. Premathilake and Alexei V. Demchenko
Beilstein J. Org. Chem. 2012, 8, 597–605. https://doi.org/10.3762/bjoc.8.66

Supporting Information

Supporting Information File 1: Experimental procedures, extended experimental data, 1H and 13C NMR spectra for all new compounds.
Format: PDF Size: 2.1 MB Download

Cite the Following Article

2-Allylphenyl glycosides as complementary building blocks for oligosaccharide and glycoconjugate synthesis
Hemali D. Premathilake and Alexei V. Demchenko
Beilstein J. Org. Chem. 2012, 8, 597–605. https://doi.org/10.3762/bjoc.8.66

How to Cite

Premathilake, H. D.; Demchenko, A. V. Beilstein J. Org. Chem. 2012, 8, 597–605. doi:10.3762/bjoc.8.66

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Buntasana, S.; Padungros, P. Glycosylation of n-pentenyl glycosides using bromodiethylsulfonium salt as an activator: interception of the glycosyl intermediate by chloride ion transfer. Organic & biomolecular chemistry 2023, 22, 126–143. doi:10.1039/d3ob01618h
  • Bennett, C. S.; Nguyen, T.-A. V. ACS In Focus; American Chemical Society, 2023. doi:10.1021/acsinfocus.7e7027
  • Escopy, S.; Singh, Y.; Stine, K. J.; Demchenko, A. V. HPLC-Based Automated Synthesis of Glycans in Solution. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202201180. doi:10.1002/chem.202201180
  • Halder, S.; Addanki, R. B.; Moktan, S.; Kancharla, P. K. Glycosyl o-[1-(p-MeO-Phenyl)vinyl]benzoates (PMPVB) as Easily Accessible, Stable, and Reactive Glycosyl Donors for O-, S-, and C-Glycosylations under Brønsted Acid Catalysis. The Journal of organic chemistry 2022, 87, 7033–7055. doi:10.1021/acs.joc.2c00093
  • Escopy, S.; Singh, Y.; Demchenko, A. V. Palladium(II)-assisted activation of thioglycosides. Organic & biomolecular chemistry 2021, 19, 2044–2054. doi:10.1039/d1ob00004g
  • Geringer, S. A.; Singh, Y.; Hoard, D. J.; Demchenko, A. V. A Highly Efficient Glycosidation of Glycosyl Chlorides by Using Cooperative Silver(I) Oxide-Triflic Acid Catalysis. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 8053–8063. doi:10.1002/chem.201905576
  • Zu, Y.; Cai, C.; Jingyuan, S.; Lili, C.; Yingle, F.; Zhang, S.; Zhang, Q.; Chai, Y. n-Pentenyl-Type Glycosides for Catalytic Glycosylation and Their Application in Single-Catalyst One-Pot Oligosaccharide Assemblies. Organic letters 2019, 21, 8270–8274. doi:10.1021/acs.orglett.9b03038
  • Kulkarni, S. S.; Wang, C.-C.; Sabbavarapu, N. M.; Podilapu, A. R.; Liao, P.-H.; Hung, S.-C. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chemical reviews 2018, 118, 8025–8104. doi:10.1021/acs.chemrev.8b00036
  • Ashry, E. S. H. E.; Awad, L. F.; Al Moaty, M. N. A.; Ghabbour, H. A.; Barakat, A. Stereoselective synthesis of novel thioglycosyl heterocycles. Journal of Molecular Structure 2018, 1152, 87–95. doi:10.1016/j.molstruc.2017.09.085
  • Wang, H.; Simmons, C. J.; Blaszczyk, S. A.; Balzer, P. G.; Luo, R.; Duan, X.; Tang, W. Isoquinoline‐1‐Carboxylate as a Traceless Leaving Group for Chelation‐Assisted Glycosylation under Mild and Neutral Reaction Conditions. Angewandte Chemie 2017, 129, 15904–15908. doi:10.1002/ange.201708920
  • Wang, H.-Y.; Simmons, C. J.; Blaszczyk, S. A.; Balzer, P. G.; Luo, R.; Duan, X.; Tang, W. Isoquinoline-1-Carboxylate as a Traceless Leaving Group for Chelation-Assisted Glycosylation under Mild and Neutral Reaction Conditions. Angewandte Chemie (International ed. in English) 2017, 56, 15698–15702. doi:10.1002/anie.201708920
  • Hu, Y.; Yu, K.; Shi, L.-L.; Liu, L.; Sui, J.-J.; Liu, D.-Y.; Xiong, B.; Sun, J.-S. o-(p-Methoxyphenylethynyl)phenyl Glycosides: Versatile New Glycosylation Donors for the Highly Efficient Construction of Glycosidic Linkages. Journal of the American Chemical Society 2017, 139, 12736–12744. doi:10.1021/jacs.7b07020
  • Hasty, S. J.; Bandara, M. D.; Rath, N. P.; Demchenko, A. V. S-Benzimidazolyl (SBiz) Imidates as a Platform for Oligosaccharide Synthesis via Active-Latent, Armed-Disarmed, Selective, and Orthogonal Activations. The Journal of organic chemistry 2017, 82, 1904–1911. doi:10.1021/acs.joc.6b02478
  • Pornsuriyasak, P.; Jia, X. G.; Kaeothip, S.; Demchenko, A. V. Templated Oligosaccharide Synthesis: The Linker Effect on the Stereoselectivity of Glycosylation. Organic letters 2016, 18, 2316–2319. doi:10.1021/acs.orglett.6b01102
  • Mukherjee, M. M.; Basu, N.; Ghosh, R. Iron(III) chloride modulated selective 1,2-trans glycosylation based on glycosyl trichloroacetimidate donors and its application in orthogonal glycosylation. RSC Advances 2016, 6, 105589–105606. doi:10.1039/c6ra21859h
  • Lindhorst, T. K. Multivalent glycosystems for nanoscience. Beilstein journal of organic chemistry 2014, 10, 2345–2347. doi:10.3762/bjoc.10.244
  • Ranade, S. C.; Demchenko, A. V. Glycosyl alkoxythioimidates as building blocks for glycosylation: a reactivity study. Carbohydrate research 2014, 403, 115–122. doi:10.1016/j.carres.2014.06.025
  • Ranade, S. C.; Demchenko, A. V. Mechanism of Chemical Glycosylation: Focus on the Mode of Activation and Departure of Anomeric Leaving Groups. Journal of Carbohydrate Chemistry 2013, 32, 1–43. doi:10.1080/07328303.2012.749264
Other Beilstein-Institut Open Science Activities