Raman spectroscopy as a tool for monitoring mesoscale continuous-flow organic synthesis: Equipment interface and assessment in four medicinally-relevant reactions

Trevor A. Hamlin and Nicholas E. Leadbeater
Beilstein J. Org. Chem. 2013, 9, 1843–1852. https://doi.org/10.3762/bjoc.9.215

Supporting Information

Supporting Information File 1: NMR spectra of the isolated products (1, 2a, 3d, 4a), further experimental information, and pictures of the Raman interface and Cartesian coordinates of the stationary points.
Format: PDF Size: 987.1 KB Download

Cite the Following Article

Raman spectroscopy as a tool for monitoring mesoscale continuous-flow organic synthesis: Equipment interface and assessment in four medicinally-relevant reactions
Trevor A. Hamlin and Nicholas E. Leadbeater
Beilstein J. Org. Chem. 2013, 9, 1843–1852. https://doi.org/10.3762/bjoc.9.215

How to Cite

Hamlin, T. A.; Leadbeater, N. E. Beilstein J. Org. Chem. 2013, 9, 1843–1852. doi:10.3762/bjoc.9.215

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Al Azri, N.; Clifford, C.; Enick, R. M.; Veser, G. Impact of Flow Configurations on Response Time and Data Quality in Real-Time, In-Line Fourier Transform Infrared (FTIR) Monitoring of Viscous Flows. Organic Process Research & Development 2023. doi:10.1021/acs.oprd.3c00299
  • Madani, A.; Pieber, B. In situ Reaction Monitoring in Photocatalytic Organic Synthesis. ChemCatChem 2023, 15. doi:10.1002/cctc.202201583
  • Besson, T.; Hebert, O.; Dubouilh-Benard, C.; Campos, J. F.; Berteina-Raboin, S.; Fruit, C. Monitoring of Catalyst-Free Microwave-Assisted MCR-Type Synthesis of 2-Amino-3-cyano-4H-chromene Derivatives Using Raman Spectrometry. Synthesis 2022, 54, 5215–5225. doi:10.1055/a-1891-0976
  • Rodriguez-Zubiri, M.; Felpin, F.-X. Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What?. Organic Process Research & Development 2022, 26, 1766–1793. doi:10.1021/acs.oprd.2c00102
  • Köhnke, K.; Wessel, N.; Esteban, J.; Jin, J.; Vorholt, A. J.; Leitner, W. Operandomonitoring of mechanisms and deactivation of molecular catalysts. Green Chemistry 2022, 24, 1951–1972. doi:10.1039/d1gc04383h
  • Leadbeater, N. E. Flow Chemistry as an Enabling Technology for Synthetic Organic Chemistry. Methods in Pharmacology and Toxicology; Springer New York, 2021; pp 489–526. doi:10.1007/978-1-0716-1579-9_14
  • Cioc, R.; Ruijter, E.; Orru, R. V. A. Multicomponent Synthesis: Cohesive Integration of Green Chemistry Principles. Methods in Pharmacology and Toxicology; Springer New York, 2021; pp 237–267. doi:10.1007/978-1-0716-1579-9_8
  • Bonner, A.; Loftus, A.; Padgham, A. C.; Baumann, M. Forgotten and forbidden chemical reactions revitalised through continuous flow technology. Organic & biomolecular chemistry 2021, 19, 7737–7753. doi:10.1039/d1ob01452h
  • Kaven, L. F.; Wolff, H. J. M.; Wille, L.; Wessling, M.; Mitsos, A.; Viell, J. In-line Monitoring of Microgel Synthesis: Flow versus Batch Reactor. Organic Process Research & Development 2021, 25, 2039–2051. doi:10.1021/acs.oprd.1c00087
  • Sato, Y.; Liu, J.; Kukor, A. J.; Culhane, J. C.; Tucker, J. L.; David, K.; M, C. B.; Hein, J. E. Real-Time Monitoring of Solid-Liquid Slurries: Optimized Synthesis of Tetrabenazine. The Journal of organic chemistry 2021, 86, 14069–14078. doi:10.1021/acs.joc.1c01098
  • Gambacorta, G.; Sharley, J. S.; Baxendale, I. R. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein journal of organic chemistry 2021, 17, 1181–1312. doi:10.3762/bjoc.17.90
  • Morin, M. A.; Zhang, W. P.; Mallik, D.; Organ, M. G. Sampling and analysis in flow: the keys to smarter, more controllable and sustainable fine‐chemical manufacturing. Angewandte Chemie (International ed. in English) 2021, 60, 20606–20626. doi:10.1002/anie.202102009
  • Morin, M. A.; Zhang, W. (Peter); Mallik, D.; Organ, M. G. Sampling and Analysis in Flow: The Keys to Smarter, More Controllable, and Sustainable Fine‐Chemical Manufacturing. Angewandte Chemie 2021, 133, 20774–20794. doi:10.1002/ange.202102009
  • Fülöp, Z.; Szemesi, P.; Bana, P.; Éles, J.; Greiner, I. Evolution of flow-oriented design strategies in the continuous preparation of pharmaceuticals. Reaction Chemistry & Engineering 2020, 5, 1527–1555. doi:10.1039/d0re00273a
  • Niño, C. G. Ph.D. Thesis, Aug 10, 2020.
  • Sagmeister, P.; Williams, J. D.; Hone, C. A.; Kappe, C. O. Laboratory of the future: a modular flow platform with multiple integrated PAT tools for multistep reactions. Reaction Chemistry & Engineering 2019, 4, 1571–1578. doi:10.1039/c9re00087a
  • Galaverna, R.; Ribessi, R. L.; Rohwedder, J. J. R.; Pastre, J. C. Coupling Continuous Flow Microreactors to MicroNIR Spectroscopy: Ultracompact Device for Facile In-Line Reaction Monitoring. Organic Process Research & Development 2018, 22, 780–788. doi:10.1021/acs.oprd.8b00060
  • Glotz, G.; Kappe, C. O. Design and construction of an open source-based photometer and its applications in flow chemistry. Reaction Chemistry & Engineering 2018, 3, 478–486. doi:10.1039/c8re00070k
  • Erythropel, H. C.; Zimmerman, J. B.; de Winter, T. M.; Petitjean, L.; Melnikov, F.; Lam, C. H.; Lounsbury, A.; Mellor, K. E.; Janković, N. Z.; Tu, Q.; Pincus, L. N.; Falinski, M. M.; Shi, W.; Coish, P.; Plata, D. L.; Anastas, P. T. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry 2018, 20, 1929–1961. doi:10.1039/c8gc00482j
  • Loren, B. P.; Wleklinski, M.; Koswara, A.; Yammine, K.; Hu, Y.; Nagy, Z. K.; Thompson, D. H.; Cooks, R. G. Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine. Chemical science 2017, 8, 4363–4370. doi:10.1039/c7sc00905d
Other Beilstein-Institut Open Science Activities