Spin state switching in iron coordination compounds

Philipp Gütlich, Ana B. Gaspar and Yann Garcia
Beilstein J. Org. Chem. 2013, 9, 342–391. https://doi.org/10.3762/bjoc.9.39

Cite the Following Article

Spin state switching in iron coordination compounds
Philipp Gütlich, Ana B. Gaspar and Yann Garcia
Beilstein J. Org. Chem. 2013, 9, 342–391. https://doi.org/10.3762/bjoc.9.39

How to Cite

Gütlich, P.; Gaspar, A. B.; Garcia, Y. Beilstein J. Org. Chem. 2013, 9, 342–391. doi:10.3762/bjoc.9.39

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Albavera-Mata, A.; Prakash, P.; Gibson, J. B.; Fonseca, E.; Ren, S.; Zhang, X.-G.; Cheng, H.-P.; Shatruk, M.; Trickey, S. B.; Hennig, R. G. Discovery of Spin-Crossover Materials with Equivariant Graph Neural Networks and Relevance-Based Classification. Journal of chemical theory and computation 2025, 21, 3913–3921. doi:10.1021/acs.jctc.4c01690
  • Veliu, V.; Yalçın, O.; Özüm, S.; Erdem, R. Spin-crossover phenomenon with magnetic and quadrupolar interactions: Study of the static and dynamic aspects using the spin-1 Blume–Emery–Griffiths model on two sublattices. Chinese Journal of Physics 2025. doi:10.1016/j.cjph.2025.04.016
  • Yuan, S.; Natt, N.; Powell, B. J. Impact of Molecular Distortions on Bistability in Spin Crossover Complexes. Inorganic chemistry 2025, 64, 7182–7193. doi:10.1021/acs.inorgchem.5c00746
  • Kaźmierczak, M.; Weselski, M.; Siczek, M.; Wolny, J. A.; Schünemann, V.; Bronisz, R. [2 + 2] Photocyclization converts thermally induced spin crossover effect into "hidden hysteresis" one. Chemical science 2025. doi:10.1039/d4sc05587j
  • Traiche, R.; Oubouchou, H.; Boukheddaden, K. Effect of intermolecular interactions and elastic frustration on the dynamical properties of the isothermal relaxation of 1D spin crossover chains. The Journal of chemical physics 2025, 162. doi:10.1063/5.0258426
  • Praetz, S.; Grötzsch, D.; Schlesiger, C.; Motz, D.; Würth, M.; Zimmermann, R.; Lucka, R.; Malzer, W.; Lützenkirchen-Hecht, D.; Renz, F.; Kanngießer, B. In situ heating cell for temperature dependent transmission x-ray absorption spectroscopy (XAS) measurement with a laboratory based spectrometer. The Review of scientific instruments 2025, 96. doi:10.1063/5.0253653
  • Kumar, V.; Ghosh, A. C.; Draoui, Y.; Wang, M.; van Hecke, K.; Rotaru, A.; Garcia, Y. Thermally Induced FeII Spin Crossover Hybrid Complex Incorporating para‐Sulfocinnamic Acid. European Journal of Inorganic Chemistry 2025, 28. doi:10.1002/ejic.202400753
  • Wu, J.; Yang, Q.; Li, X.-L.; Zhu, Z.; Zhao, C.; Liu, T.; Tang, J. An AIE-Active Fe(II) Complex Exhibiting Synergistic Spin-Crossover and Luminescent Properties. Crystal Growth & Design 2025, 25, 1276–1281. doi:10.1021/acs.cgd.4c01726
  • Martinez-Martinez, A.; Albalad, J.; Resines-Urien, E.; Sañudo, E. C.; Mariano, A. L.; Fabelo, O.; Rodríguez-Velamazán, J. A.; Poloni, R.; Maspoch, D.; Costa, J. S. Decoding Framework Dynamics in a Spin Crossover Flexible Metal-Organic Framework. Small (Weinheim an der Bergstrasse, Germany) 2025, 21, e2411201. doi:10.1002/smll.202411201
  • Adhikari, R.; Sarkar, P.; Golder, A. K.; Mukherjee, C. 2-Amidophenolate and 2-Iminosemiquinone Radical-Coordinated Vanadyl Complex as Catholyte for Non-Aqueous Redox-Flow Batteries. Chemistry, an Asian journal 2025, 20, e202401350. doi:10.1002/asia.202401350
  • Lu, K.; Chen, Y.-X.; Hu, J.-S.; Liu, Z.-K.; Shi, X.-L.; Yu, M.; Starikova, A. A.; Tao, J. Spin-state modulation by host–guest chemistry with cucurbiturils. Chemical Communications 2025. doi:10.1039/d5cc00979k
  • Dutta, M.; Dutta, A.; Ghosh, P.; Maiti, S.; Stoleriu, L.; Enachescu, C.; Chakraborty, P. Variation in the zero-point energy difference via electrostatic interactions in Co(ii)-Cltpy-based spin-crossover molecular materials. Journal of Materials Chemistry C 2024, 13, 414–429. doi:10.1039/d4tc02203c
  • Mahbub, R.; McElveen, K. A.; Zaz, M. Z.; Ekanayaka, T. K.; Mishra, E.; Bissell, E.; Banerjee, P.; Shapiro, D.; Lai, R. Y.; Dowben, P. A.; Shield, J. E. Effect of different crystallographic properties on the electrical conductivity of two polymorphs of a spin crossover complex. Journal of physics. Condensed matter : an Institute of Physics journal 2024, 37, 85302–085302. doi:10.1088/1361-648x/ad9a81
  • Bibik, Y. S.; Fritsky, I. O.; Kucheriv, O. I.; Marynin, A. I.; Molnár, G.; Salmon, L.; Bousseksou, A.; Gural'skiy, I. A. Switchable nanoparticles based on Fe(II)-Au(I) spin-crossover coordination polymer. Journal of Molecular Structure 2024, 1318, 139302. doi:10.1016/j.molstruc.2024.139302
  • Hirota, M.; Murata, S.; Sakurai, T.; Ohta, H.; Takahashi, K. The Relationship Between Spin Crossover (SCO) Behaviors, Cation and Ligand Motions, and Intermolecular Interactions in a Series of Anionic SCO Fe(III) Complexes with Halogen-Substituted Azobisphenolate Ligands. Molecules (Basel, Switzerland) 2024, 29, 5473. doi:10.3390/molecules29225473
  • Chen, F.-L.; Liu, X.-L.; Zhao, Y.; Li, G.; Gao, B.-H.; Wang, X.-Y. Spin crossover FeIII complexes with a substituted Hqnal ligand: effects of anions and solvents. Dalton transactions (Cambridge, England : 2003) 2024, 53, 17233–17243. doi:10.1039/d4dt01954g
  • Amin, N. A. A. M.; Said, S. M.; Ibrahim, N. M. J. N.; Hasnan, M. M. I. M.; Salleh, M. F. M.; Afifi, A. M. Comparative analysis between solution-phase and thin films of cobalt(II) spin crossover (SCO) complexes with 8, 10, 12-carbon alkyl chains based on structural, optical and electrical properties. Journal of Materials Science: Materials in Electronics 2024, 35. doi:10.1007/s10854-024-13656-4
  • Summers, A.; Zahir, F. Z. M.; Turner, G. F.; Hay, M. A.; Riboldi-Tunnicliffe, A.; Williamson, R.; Bird, S.; Goerigk, L.; Boskovic, C.; Moggach, S. A. Putting the squeeze on valence tautomerism in cobalt-dioxolene complexes. Nature communications 2024, 15, 8922. doi:10.1038/s41467-024-53311-4
  • Rajpurohit, S.; Vennelakanti, V.; Kulik, H. J. Improving Predictions of Spin-Crossover Complex Properties through DFT Calculations with a Local Hybrid Functional. The journal of physical chemistry. A 2024, 128, 9082–9089. doi:10.1021/acs.jpca.4c05046
  • Xu, B.; Li, Y.; Baptiste, B.; Chamoreau, L.-M.; Paliwoda, D.; Mi, S.; Molnár, G.; Boukheddaden, K.; Lescouëzec, R. Deciphering the Unusual Pressure-Induced Electron Transfer in the Molecular Switch {[Fe(Tp)(CN)3]2[Co(vbik)2]2}·(BF4)2·2MeOH. Chemistry of Materials 2024. doi:10.1021/acs.chemmater.4c02347

Patents

  • MARQUES MOROS FRANCISCO; CANET FERRER JOSÉ; CORONADO MIRALLES EUGENIO; GAVARA EDO MIGUEL JOSÉ. USE OF THE COMPOUND [IRON (II) (HYDROTRIS (3,5-DIMETHYL-1-PYRAZOLYL) BORATE)2] AS A TEMPERATURE SENSOR (Machine-translation by Google Translate, not legally binding). ES 2995408 A1, Feb 10, 2025.
  • RENZ FRANZ; SINDELAR RALF. Geträgerte molekulare Schalter. DE 102014107644 A1, July 16, 2015.
Other Beilstein-Institut Open Science Activities