Search results

Search for "proton coupled electron transfer" in Full Text gives 29 result(s) in Beilstein Journal of Organic Chemistry.

Organometallic vs organic photoredox catalysts for photocuring reactions in the visible region

  • Aude-Héloise Bonardi,
  • Frédéric Dumur,
  • Guillaume Noirbent,
  • Jacques Lalevée and
  • Didier Gigmes

Beilstein J. Org. Chem. 2018, 14, 3025–3046, doi:10.3762/bjoc.14.282

Graphical Abstract
  • already found wide applications such as in water splitting, solar energy storage, proton-coupled electron transfer or photovoltaic for example [18]. 1.3 Electronic transitions involved into photoredox processes For selected photoredox catalysts, light irradiation has enough energy for the excitation of
PDF
Album
Review
Published 12 Dec 2018

Photocatalyic Appel reaction enabled by copper-based complexes in continuous flow

  • Clémentine Minozzi,
  • Jean-Christophe Grenier-Petel,
  • Shawn Parisien-Collette and
  • Shawn K. Collins

Beilstein J. Org. Chem. 2018, 14, 2730–2736, doi:10.3762/bjoc.14.251

Graphical Abstract
  • ]. Specifically, our group has demonstrated that heteroleptic Cu(I) complexes [19][20][21] have significant potential as photocatalysts that can promote a variety of mechanistically distinct photochemical transformations including single electron transfer (SET), energy transfer (ET), and proton-coupled electron
  • transfer (PCET) reactions [22][23][24][25][26]. Herein, the evaluation of Cu(I)-complexes for photocatalytic Appel reactions and demonstration in continuous flow is described. Results and Discussion The first step in identifying a heteroleptic diamine/bisphosphine Cu(I)-based photocatalyst for the
PDF
Album
Supp Info
Letter
Published 30 Oct 2018

Photocatalytic nucleophilic addition of alcohols to styrenes in Markovnikov and anti-Markovnikov orientation

  • Martin Weiser,
  • Sergej Hermann,
  • Alexander Penner and
  • Hans-Achim Wagenknecht

Beilstein J. Org. Chem. 2015, 11, 568–575, doi:10.3762/bjoc.11.62

Graphical Abstract
  • protonated rapidly to the neutral radical that is the key intermediate to explain the Markovnikov selectivity of this route. Both steps, electron transfer and protonation, could also occur in one proton-coupled electron transfer step. Back electron transfer to the photocatalyst finishes the photocatalytic
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2015

3-Pyridinols and 5-pyrimidinols: Tailor-made for use in synergistic radical-trapping co-antioxidant systems

  • Luca Valgimigli,
  • Daniele Bartolomei,
  • Riccardo Amorati,
  • Evan Haidasz,
  • Jason J. Hanthorn,
  • Susheel J. Nara,
  • Johan Brinkhorst and
  • Derek A. Pratt

Beilstein J. Org. Chem. 2013, 9, 2781–2792, doi:10.3762/bjoc.9.313

Graphical Abstract
  • radical is believed to be a proton-coupled electron transfer reaction, occurring via an approximately planar transition state wherein the unpaired electron is delocalized across both phenyl rings [36]. As such, it is difficult to envision how the conformation of the dimethylamino substituent in 4c may
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2013
Other Beilstein-Institut Open Science Activities