Search results

Search for "intermediate" in Full Text gives 2168 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthesis, structure, ionochromic and cytotoxic properties of new 2-(indolin-2-yl)-1,3-tropolones

  • Yurii A. Sayapin,
  • Eugeny A. Gusakov,
  • Inna O. Tupaeva,
  • Alexander D. Dubonosov,
  • Igor V. Dorogan,
  • Valery V. Tkachev,
  • Anna S. Goncharova,
  • Gennady V. Shilov,
  • Natalia S. Kuznetsova,
  • Svetlana Y. Filippova,
  • Tatyana A. Krasnikova,
  • Yanis A. Boumber,
  • Alexey Y. Maksimov,
  • Sergey M. Aldoshin and
  • Vladimir I. Minkin

Beilstein J. Org. Chem. 2025, 21, 358–368, doi:10.3762/bjoc.21.26

Graphical Abstract
  • ). As shown in Scheme 2, in the initial step, the aldol condensation of 2,3,3-trimethylindolenine 2 with o-chloranil (3) leads to the intermediate compounds, 6-(2-hetarylmethylene)-6-hydroxy-2,4-cyclohexadien-1-ones 4. Such intermediates were isolated preparatively and structurally characterized in the
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2025

Red light excitation: illuminating photocatalysis in a new spectrum

  • Lucas Fortier,
  • Corentin Lefebvre and
  • Norbert Hoffmann

Beilstein J. Org. Chem. 2025, 21, 296–326, doi:10.3762/bjoc.21.22

Graphical Abstract
  • this review hitherto. This singlet oxygen is generated by the energy transfer from the excited state of the phthalocyanin zinc complexes to molecular oxygen, allowing the oxidation of the N-phenyltetrahydroisoquinoline 21 into a reactive iminium intermediate that subsequently couples with nucleophiles
PDF
Album
Review
Published 07 Feb 2025

Molecular diversity of the reactions of MBH carbonates of isatins and various nucleophiles

  • Zi-Ying Xiao,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2025, 21, 286–295, doi:10.3762/bjoc.21.21

Graphical Abstract
  • derivatives. At first, a Lewis base attack at the α-position of the MBH nitrile of isatin resulted in the intermediate A with elimination of carbon dioxide and tert-butoxide ion. Secondly, the product 3 was produced by the SN2 substitution of the Lewis base by the arylamine. When MBH maleimides of isatin were
  • used in the reaction, a direct Michael addition of the arylamine to the C=C bond of the maleimide unit and sequential elimination of carbon dioxide and tert-butoxide ion gives the intermediate B, which in turn undergoes an allylic rearrangement to afford the product 5. In this process, no extra
  • by the tert-butoxide anion affords the zwitterionic intermediate D. In the case of triphenylphosphine, the similar zwitterionic intermediate D is stable and could be isolated as the product 6. In the case of tri(n-butyl)phosphine, Michael addition of the more activated zwitterionic intermediate D to
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2025

Three-component reactions of conjugated dienes, CH acids and formaldehyde under diffusion mixing conditions

  • Dmitry E. Shybanov,
  • Maxim E. Kukushkin,
  • Eugene V. Babaev,
  • Nikolai V. Zyk and
  • Elena K. Beloglazkina

Beilstein J. Org. Chem. 2025, 21, 262–269, doi:10.3762/bjoc.21.18

Graphical Abstract
  • in a high yield in the presence of ʟ-proline could be explained by the efficient crotonic condensation of formaldehyde and acetylacetone (1), followed by the addition of the second equivalent of diketone 1 to the highly reactive methylidene intermediate. The mild reaction conditions (room temperature
  • with ʟ-proline participation is shown in Scheme 4. In the first step, formaldehyde reacts with proline, forming an imine salt 17, which then reacts with the diketone 1. The resulting intermediate 18 eliminates a proton and the anion of ʟ-proline, and then the methylenebenzophenone 20 reacts with
  • 9 in toluene for 7 h led to the formation of an equilibrium mixture of these compounds in a ratio of ≈2:1 (Scheme 5). We propose that the reversible transformation of 8 to 9 proceeded via the intermediate formation of zwitterion 21, in which the charges were stabilized by mesomeric effects under
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2025

Synthesis of disulfides and 3-sulfenylchromones from sodium sulfinates catalyzed by TBAI

  • Zhenlei Zhang,
  • Ying Wang,
  • Xingxing Pan,
  • Manqi Zhang,
  • Wei Zhao,
  • Meng Li and
  • Hao Zhang

Beilstein J. Org. Chem. 2025, 21, 253–261, doi:10.3762/bjoc.21.17

Graphical Abstract
  • intermediate in the reaction. When the asymmetric thiosulfonate was used as the substrate, unexpectedly a mixture of three disulfide ethers rather than a single disulfide was obtained under the standard reaction conditions (Scheme 5, reaction 1), which led us to conclude that the reaction might be a process in
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2025

Visible-light-promoted radical cyclisation of unactivated alkenes in benzimidazoles: synthesis of difluoromethyl- and aryldifluoromethyl-substituted polycyclic imidazoles

  • Yujun Pang,
  • Jinglan Yan,
  • Nawaf Al-Maharik,
  • Qian Zhang,
  • Zeguo Fang and
  • Dong Li

Beilstein J. Org. Chem. 2025, 21, 234–241, doi:10.3762/bjoc.21.15

Graphical Abstract
  • . Furthermore, terminal olefins with varying chain lengths also reacted successfully, resulting in 5-membered and 7-membered cyclized products (3l–p) with yields between 44% and 66%. The lower yields in these cases might be due to the low reactivity of the intermediate C (Scheme 3), which may have made it less
  • with 1a and PhI(OCOCF2H)2, which resulted in the formation of product 3a with an 85% yield. This finding indicated that PhI(OCOCF2H)2 played a crucial role as an intermediate in the reaction. Subsequently, we introduced 3 equivalents of a radical scavenger (either TEMPO or BHT) into the reaction
  • exchange between PIDA and CF2HCOOH would generate PhI(OCOCF2H)2 A. Homolysis of A under visible light (72 W white light) produced an iodanyl radical B and a CF2H radical. The CF2H radical regioselectively added to 1a to form intermediate C. Subsequently, intermediate C could be converted into the radical
PDF
Album
Supp Info
Letter
Published 30 Jan 2025

Streamlined modular synthesis of saframycin substructure via copper-catalyzed three-component assembly and gold-promoted 6-endo cyclization

  • Asahi Kanno,
  • Ryo Tanifuji,
  • Satoshi Yoshida,
  • Sota Sato,
  • Saori Maki-Yonekura,
  • Kiyofumi Takaba,
  • Jungmin Kang,
  • Kensuke Tono,
  • Koji Yonekura and
  • Hiroki Oguri

Beilstein J. Org. Chem. 2025, 21, 226–233, doi:10.3762/bjoc.21.14

Graphical Abstract
  • coupling with gold(I)-mediated 6-endo cyclization streamlines the rapid and modular assembly of the substructure of bis-tetrahydroisoquinoline (THIQ) alkaloids. The design of the key synthetic intermediate bearing a 2,3-diaminobenzofuran moiety allows both gold(I)-mediated regiocontrolled 6-endo
  • involvement of a fluorescent intermediate in the cascade synthetic process. Keywords: cascade reactions; copper-catalyzed three-component coupling; gold-mediated 6-endo hydroamination; tandem cyclizations; tetrahydroisoquinoline alkaloids; Introduction The bis-tetrahydroisoquinoline (THIQ) alkaloid family
  • cyclization to efficiently construct the pentacyclic intermediate 7, as demonstrated in our previous study [15]. Following the pioneering total synthesis of saframycin A (1) by Fukuyama and co-workers taking advantage of the compatibility of phenolic hydroxy groups with PS-type cyclization [22], other groups
PDF
Album
Supp Info
Letter
Published 28 Jan 2025

Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations

  • Seungmin Lee,
  • Minsuk Kim,
  • Hyewon Han and
  • Jongwoo Son

Beilstein J. Org. Chem. 2025, 21, 200–216, doi:10.3762/bjoc.21.12

Graphical Abstract
  • amidation process of dioxazolones. Dioxazolone 1 binds to the chiral copper complex 3, generating the adduct INT-1. Decarboxylation then occurs, forming the copper nitrenoid intermediate INT-2, subsequently undergoing hydrogen atom transfer in a regioselective manner to afford INT-3. The related acyl
  • nitrenoid intermediate was characterized by the same group [75]. Further radical rebound from INT-4 induces the enantioselective C–N bond formation. Finally, the desired product 2 is released from INT-4, regenerating the active chiral copper species to participate in the catalytic cycle. 1.2 C(sp2)–H
  • amidation Recently, Cao and co-workers reported the copper-catalyzed synthesis of 1,2,4-triazole derivatives via an N-acyl nitrene intermediate [76]. As illustrated in Scheme 3, dioxazolones 4 and N-iminoquinolinium ylides 5 served as reactive substrates, leading to the formation of various polycyclic 1,2,4
PDF
Album
Review
Published 22 Jan 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • achieved by precisely controlling the potential. Additionally, the merging of electrochemistry and transition-metal catalysis offers advantages in controlling substrate activation, intermediate reactivity, and bond formation, as well as facilitating asymmetric transformations. As a result, electrochemical
  • , and benzamide, however, no relevant competitive oxidation peak was observed with only Cu(OAc)2. These results indicate that Cu(II) intermediate 5 was generated. Based on the mechanistic studies, the authors suggested plausible reaction mechanisms (Figure 4). First, the Cu(II) catalyst coordinates with
  • substrate 1 in the presence of a base to form Cu(II) complex 5, which undergoes anodic oxidation to generate Cu(III) intermediate 6. Carboxylate-assisted C–H activation of the benzamide subsequently leads to the formation of Cu(III) species 7. Metalation of the terminal alkyne 2, followed by reductive
PDF
Album
Review
Published 16 Jan 2025

Cu(OTf)2-catalyzed multicomponent reactions

  • Sara Colombo,
  • Camilla Loro,
  • Egle M. Beccalli,
  • Gianluigi Broggini and
  • Marta Papis

Beilstein J. Org. Chem. 2025, 21, 122–145, doi:10.3762/bjoc.21.7

Graphical Abstract
  • reaction proceeds through an initial single-electron transfer from NFBS assisted by the active copper species, followed by intermolecular hydrogen-atom transfer from the carbazate. The nitrogen radical intermediate I thus formed is decomposed into the acyl or alkyl radical intermediates II and III
  • , respectively. The latter interacts with the alkene generating an alkyl radical IV that converts to the cationic intermediate V by single-electron oxidation by the Cu(II) species. Finally, the attack of the nucleophile leads to the desired products 6. Starting from aryl carbazates, intermediate II, adds
  • intermediate VIII. At this stage, the amido–copper complex IX selectively attacks the intermediate providing the 1-aryl-2-sulfonamidopropane 8. This procedure is a valuable alternative to a similar approach for the synthesis of amphetamine derivatives 9 from allyl carbamates that requires excess of Cu(OTf)2 [6
PDF
Album
Review
Published 14 Jan 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
  • activation, atroposelective aza-Michael addition, and intramolecular aldol reaction to form the cationic intermediate Int-6. Release of the catalyst C2, reduction with NaBH4, and dehydration with acetic acid leads to the desired product 6. Recently, an organocatalytic atroposelective intramolecular (4 + 2
  • intermediate Int-9. As the assumed rate-determining step the intramolecular nucleophilic addition takes place, followed by further cyclization and finally, release of the organocatalyst to form the axially chiral product 9. Various aryl-substituted indolines 9 were obtained in good yields and high enantiomeric
  • acylazolium intermediate Int-16 followed by E-selective protonation of Int-17 (Scheme 9). NHC-catalysis also proved useful in the atroposelective construction of triaryl derivatives with two stereogenic axes. Wei, Du, and co-workers developed a synthesis of 1,2-diaxially chiral triarylpyranones 29 via an NHC
PDF
Album
Review
Published 09 Jan 2025

Facile one-pot reduction of β-nitrostyrenes to phenethylamines using sodium borohydride and copper(II) chloride

  • Laura D’Andrea and
  • Simon Jademyr

Beilstein J. Org. Chem. 2025, 21, 39–46, doi:10.3762/bjoc.21.4

Graphical Abstract
  • formation of numerous intermediate species at T = 0, unstable enough to decompose and deliver the desired product (Figure 2). These species were not present in the crude mixture after 15 minutes of stirring. We could speculate that this phenomenon might indicate that the reduction proceeds via Haber or
  • Jackson mechanisms (product (a)), which, to date, were only associated to the catalytic hydrogenation of nitrobenzene analogues [35][36][37] (Figure 3). An attempt to identify the higher molecular masses observed by MS was made, and two intermediate structures are proposed in Figure 3. Together with (a
PDF
Album
Supp Info
Letter
Published 07 Jan 2025

Emerging trends in the optimization of organic synthesis through high-throughput tools and machine learning

  • Pablo Quijano Velasco,
  • Kedar Hippalgaonkar and
  • Balamurugan Ramalingam

Beilstein J. Org. Chem. 2025, 21, 10–38, doi:10.3762/bjoc.21.3

Graphical Abstract
  • medium for enhancing the optimization of the Buchwald–Hartwig amination intermediate, which is crucial for synthesizing the drug olanzapine [47]. The reactor setup was integrated with spectroscopic and chromatographic in-line analytical tools, enabling real-time monitoring of products and reaction
PDF
Album
Review
Published 06 Jan 2025

Synthesis, structure and π-expansion of tris(4,5-dehydro-2,3:6,7-dibenzotropone)

  • Yongming Xiong,
  • Xue Lin Ma,
  • Shilong Su and
  • Qian Miao

Beilstein J. Org. Chem. 2025, 21, 1–7, doi:10.3762/bjoc.21.1

Graphical Abstract
  • Barton–Kellogg reaction with 8b under similar conditions gave the episulfide intermediate, which, however, could not be desulfurized with triisopropyl phosphite, trimethyl phosphite or triphenylphosphine to give the corresponding triene. The subsequent Scholl reaction of 10 with DDQ and triflic acid at
  • . These findings suggest that the fully fused product 11 may have been formed through a different partially cyclized intermediate rather than directly from compound 3. Slow evaporation of solvent from a solution of 1 in hexane interestingly resulted in the simultaneous formation of both colorless and
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2025

Synthesis, characterization, and photophysical properties of novel 9‑phenyl-9-phosphafluorene oxide derivatives

  • Shuxian Qiu,
  • Duan Dong,
  • Jiahui Li,
  • Huiting Wen,
  • Jinpeng Li,
  • Yu Yang,
  • Shengxian Zhai and
  • Xingyuan Gao

Beilstein J. Org. Chem. 2024, 20, 3299–3305, doi:10.3762/bjoc.20.274

Graphical Abstract
  • was achieved in 5 steps starting from commercially available 2-bromo-4-fluoro-1-nitrobenzene (1, Scheme 1 and Scheme 2). For the preparation of the key intermediate 5 (Scheme 1), self-coupling of 1 in the presence of copper followed by reduction of the nitro group generated diamine compound 3 (89
  • room temperature. (a) PL spectra of the PhFlOP-based emitters 7 measured in toluene at room temperature. (b) PL spectra of 7-H measured in different solvents at room temperature. Preparation of key intermediate 5. Synthesis of PhFlOP-based molecules 7. Crystal data and structural parameters for 7-H
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024

Reactivity of hypervalent iodine(III) reagents bearing a benzylamine with sulfenate salts

  • Beatriz Dedeiras,
  • Catarina S. Caldeira,
  • José C. Cunha,
  • Clara S. B. Gomes and
  • M. Manuel B. Marques

Beilstein J. Org. Chem. 2024, 20, 3281–3289, doi:10.3762/bjoc.20.272

Graphical Abstract
  • ) [32][33]. To investigate the reactivity of the BBXs in this electrophilic amination reaction, the generated compound 4 was subjected to a retro-Michael addition to produce the sulfenate anion intermediate, followed by the addition of BBX 2. Based on our experience with HIRs, the reaction of 2 with
  • reaction (Table 1, entry 1) [4]. In the presence of potassium carbonate, only starting material 4a was detected. A stronger base to generate the nucleophilic intermediate was tested, and sulfonamide 5aa was detected in trace amounts (Table 1, entry 2). Considering the low solubility of the hypervalent
  • Supporting Information File 1). We propose a mechanism pathway involving the retro-Michael addition of 4, releasing acrylate and hydrogen (H2). The charge of the sulfenate anion may shift between sulfur and oxygen atoms, possibly leading to an O-Michael addition (pathway B) [35]. The intermediate of these
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2024

Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines

  • Sergio Torres-Oya and
  • Mercedes Zurro

Beilstein J. Org. Chem. 2024, 20, 3221–3255, doi:10.3762/bjoc.20.268

Graphical Abstract
  • hydrogen bonding with the protonated tertiary amine. Then, a Michael addition of malononitrile to the azadiene takes place to obtain exclusively the (S)-intermediate A. Subsequently an intramolecular nucleophilic addition of the nitrile leads to the intermediate B, which undergoes tautomerization to
  • azlactones through H-bond interactions with the squaramide moiety. The activated complex undergoes a [4 + 2] cyclization, through the Si-face attack of the enolate to the 1-azadiene leading to intermediate A which undergoes tautomerization and protonation to yield the chiral tricyclic derivative 16. To
  • -derived azadiene by H-bonding. This dual activation promotes a stereoselective addition of 3-chlorooxindole to the azadiene leading to intermediate A. The latter is also activated by the chiral guanidine and undergoes an intramolecular nucleophilic substitution which delivers the product 19b with the
PDF
Album
Review
Published 10 Dec 2024

Discovery of ianthelliformisamines D–G from the sponge Suberea ianthelliformis and the total synthesis of ianthelliformisamine D

  • Sasha Hayes,
  • Yaoying Lu,
  • Bernd H. A. Rehm and
  • Rohan A. Davis

Beilstein J. Org. Chem. 2024, 20, 3205–3214, doi:10.3762/bjoc.20.266

Graphical Abstract
  • /CH2Cl2 at room temperature (17% yield). Subjecting the methoxylated benzaldehyde intermediate 9 to a Doebner–Knoevenagel condensation with malonic acid and pyridine afforded the brominated cinnamic acid analogue 10 in 54% yield [19]. Amidation chemistry using carbonyldiimidazole (CDI) [18] and the
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2024

Multicomponent reactions driving the discovery and optimization of agents targeting central nervous system pathologies

  • Lucía Campos-Prieto,
  • Aitor García-Rey,
  • Eddy Sotelo and
  • Ana Mallo-Abreu

Beilstein J. Org. Chem. 2024, 20, 3151–3173, doi:10.3762/bjoc.20.261

Graphical Abstract
  • was withdrawn from phase III clinical trials due to insufficient efficacy compared to current antipsychotic drugs (APDs). However, POM demonstrated to be effective to treat certain populations [69]. The large-scale synthesis of a key intermediate of POM was described by Waser et al. [70] in 2011. In
  • /cyclization approach. General synthesis of 2,3-dichlorophenylpiperazine-derived compounds by the Ugi reaction and Ugi/deprotection/cyclization approach. Bucherer–Bergs multicomponent reaction to obtain a key intermediate in the synthesis of pomaglumetad methionil (POM). Ugi reaction to synthesize racetam
PDF
Album
Review
Published 03 Dec 2024

Hypervalent iodine-mediated intramolecular alkene halocyclisation

  • Charu Bansal,
  • Oliver Ruggles,
  • Albert C. Rowett and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 3113–3133, doi:10.3762/bjoc.20.258

Graphical Abstract
  • fluoride ion to displace PhI. In pathway B (bottom), the nitrogen is oxidised by the iodane, generating an electrophilic intermediate B. Nucleophilic attack by the double bond subsequently forms the 6-membered ring intermediate C, which is either immediately attacked by fluoride to form both cis and trans
  • ring A (Scheme 2). The Pd(II) intermediate is oxidised by PhI(OPiv)2/AgF, forming Pd(IV). Formation of the product can occur either by reductive elimination by Pd(IV) or SN2 nucleophilic attack by fluorine with concomitant palladium reduction. Reductive elimination of the Pd(II) intermediate forms the
  • proposed by the authors (Scheme 3). Activation of the HVI reagent by H-bonding leads to ligand exchange to give an aminofluoro iodonium intermediate A. Cyclisation occurs via nitrogen attack on the alkene to then give aziridinium intermediate B. Subsequent nucleophilic attack by fluoride on the more
PDF
Album
Review
Published 28 Nov 2024

Advances in the use of metal-free tetrapyrrolic macrocycles as catalysts

  • Mandeep K. Chahal

Beilstein J. Org. Chem. 2024, 20, 3085–3112, doi:10.3762/bjoc.20.257

Graphical Abstract
  • activates the Cu–Cl bond via chloride···calixpyrrole (N–H···Cl) hydrogen-bonding interactions toward the formation of the nitrene intermediate from chloramine-T (NaCl=NTs). Additionally, calix[4]pyrrole served as a phase-transfer catalyst in this reaction. Since chloramine-T had low solubility in
  • porphyrin radical anion. Ultimately, protonation of intermediate E led to the final product. Formation of intermediates, such as enamine A and cation radical B, was confirmed using techniques like ESIMS, 1H NMR, and EPR, Stern–Volmer quenching experiments, respectively. All these mechanistic studies
  • intermediate. This intermediate was subsequently oxidized by the porphyrin cation radical, leading to the formation of the final product and completing the catalytic cycle. They have further screened porphyrins with both electron-withdrawing and electron-donating groups at the periphery as potential
PDF
Album
Review
Published 27 Nov 2024

Synthesis of the 1,5-disubstituted tetrazole-methanesulfonylindole hybrid system via high-order multicomponent reaction

  • Cesia M. Aguilar-Morales,
  • América A. Frías-López,
  • Nadia V. Emilio-Velázquez,
  • Alejandro Islas-Jácome,
  • Angelica Judith Granados-López,
  • Jorge Gustavo Araujo-Huitrado,
  • Yamilé López-Hernández,
  • Hiram Hernández-López,
  • Luis Chacón-García,
  • Jesús Adrián López and
  • Carlos J. Cortés-García

Beilstein J. Org. Chem. 2024, 20, 3077–3084, doi:10.3762/bjoc.20.256

Graphical Abstract
  • first catalytic cycle begins with the coupling of 1,5-disubstituted tetrazole-alkyne 19 and methanesulfonyl-2-iodoaniline 17 forming the intermediate 23. Following a reductive elimination, the Sonogashira-like product 24 is produced, which then progresses into the second catalytic cycle. In this cycle
  • , an intramolecular cyclization takes place, facilitated by CuI. This step involves a 5-endo-dig cyclization, where the negatively nitrogen atom of the sulfonamide 25 attacks intramolecularly to yield the intermediate 26. The final product is formed when iodide is regenerated as CuI, allowing it to re
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2024

Enantioselective regiospecific addition of propargyltrichlorosilane to aldehydes catalyzed by biisoquinoline N,N’-dioxide

  • Noble Brako,
  • Sreerag Moorkkannur Narayanan,
  • Amber Burns,
  • Layla Auter,
  • Valentino Cesiliano,
  • Rajeev Prabhakar and
  • Norito Takenaka

Beilstein J. Org. Chem. 2024, 20, 3069–3076, doi:10.3762/bjoc.20.255

Graphical Abstract
  • prevent a direct Si–N interaction. From Rprop, the amine group of N,N-diisopropylethylamine abstracts the H1 proton with a barrier of 14.2 kcal/mol to form an intermediate (IN1). The intermediate IN1 is unstable (endergonic by 14.0 kcal/mol) and will immediately stabilize to another intermediate (IN2
PDF
Album
Supp Info
Letter
Published 25 Nov 2024

Chemical structure metagenomics of microbial natural products: surveying nonribosomal peptides and beyond

  • Thomas Ma and
  • John Chu

Beilstein J. Org. Chem. 2024, 20, 3050–3060, doi:10.3762/bjoc.20.253

Graphical Abstract
  • megaenzyme machinery that contains multiple modules arranged in an assembly line fashion, each of which is responsible for incorporating a single BB into the growing peptide intermediate (Figure 3a). One module typically contains one adenylation (A) domain that folds and operates semi-autonomously, which
  • of action (MOA) (e.g., membrane lysis and depolarization) [30][34] and specific MOA (e.g., dysregulation of ClpP protease [33], inhibition of topoisomerase I/II [36][68], blocking lipid II transport by flippase [29], sequestration of cell wall biosynthetic intermediate C55-(di)phosphate, etc.) [35
  • of an NRP despite the fact that this feature is known to be important for bioactivity [79][80]. Typically, the C-terminus of the NRP intermediate is covalently linked via a thioester bond to the phosphopantetheine prosthetic arm of the peptide carrier protein (also known as the thiolation (T) domain
PDF
Album
Perspective
Published 20 Nov 2024
Graphical Abstract
  • stabilization effect could be affected by the bulkiness and polarity of the axle-end moieties. Meanwhile, the deslipping reaction of some [3]rotaxanes directly yielded the dumbbell and two wheels without any [2]rotaxane intermediate, indicating that the deslipping on [2]rotaxane proceeded faster than on [3
  • ]rotaxane. In this case, the energy diagram of the deslipping reaction differs from those of the ones bearing a [2]rotaxane intermediate (Figure 9E). As revealed in this study, the CD-based size-complementary rotaxane exhibiting a simple framework (no ionic substituents nor deoxynucleotide) was obtained
PDF
Album
Review
Published 19 Nov 2024
Other Beilstein-Institut Open Science Activities