Search results

Search for "BEDT-TTF" in Full Text gives 8 result(s) in Beilstein Journal of Organic Chemistry.

Polythiophene and oligothiophene systems modified by TTF electroactive units for organic electronics

  • Alexander L. Kanibolotsky,
  • Neil J. Findlay and
  • Peter J. Skabara

Beilstein J. Org. Chem. 2015, 11, 1749–1766, doi:10.3762/bjoc.11.191

Graphical Abstract
  • the preparation of TTF mixed valance state materials, which showed superconducting properties [25]. Fusing the TTF unit with dithiin rings in bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) led to the extension of 1D π–π stacking intermolecular interactions in a donor sheet of a mixed valance state
  • system to 2D with a significant contribution from S···S non-covalent interactions [26]. This gave a record transition temperature among TTF mixed valence ambient pressure superconductors in the salt κ-(BEDT-TTF)2Cu[N(CN)2]Br [27]. In an attempt to create macromolecular compounds with multi-electron redox
PDF
Album
Review
Published 28 Sep 2015

Synthesis of racemic and chiral BEDT-TTF derivatives possessing hydroxy groups and their achiral and chiral charge transfer complexes

  • Sara J. Krivickas,
  • Chiho Hashimoto,
  • Junya Yoshida,
  • Akira Ueda,
  • Kazuyuki Takahashi,
  • John D. Wallis and
  • Hatsumi Mori

Beilstein J. Org. Chem. 2015, 11, 1561–1569, doi:10.3762/bjoc.11.172

Graphical Abstract
  • chiral crystals. Racemic and enantiopure bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) derivatives possessing hydroxymethyl groups as the source of hydrogen bonds were designed. The novel racemic trans-vic-(hydroxymethyl)(methyl)-BEDT-TTF 1, and racemic and enantiopure trans-vic-bis(hydroxymethyl
  • )-BEDT-TTF 2 were synthesized. Moreover, the preparations, crystal structure analyses, and electrical resistivity measurements of the novel achiral charge transfer salt θ21-[(S,S)-2]3[(R,R)-2]3(ClO4)2 and the chiral salt α’-[(R,R)-2]ClO4(H2O) were carried out. In the former θ21-[(S,S)-2]3[(R,R)-2]3(ClO4
  • chirality, but also the introduced intermolecular hydrogen bonds involving the hydroxymethyl groups, perchlorate anion, and the included solvent H2O. Keywords: BEDT-TTF; chiral molecular crystal; hydrogen bonding; hydroxy group; molecular conductors; Introduction The chiral crystals without an inversion
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2015

New tris- and pentakis-fused donors containing extended tetrathiafulvalenes: New positive electrode materials for rechargeable batteries

  • Shintaro Iwamoto,
  • Yuu Inatomi,
  • Daisuke Ogi,
  • Satoshi Shibayama,
  • Yukiko Murakami,
  • Minami Kato,
  • Kazuyuki Takahashi,
  • Kazuyoshi Tanaka,
  • Nobuhiko Hojo and
  • Yohji Misaki

Beilstein J. Org. Chem. 2015, 11, 1136–1147, doi:10.3762/bjoc.11.128

Graphical Abstract
  • crucial disadvantage, that is, they dissolve in organic solvents used for electrolyte solutions. TTF cannot be used as an active electrode material for rechargeable batteries for the above reason, while bis(ethylenedithio)-TTF (BEDT-TTF, 1b) exhibits relatively good charge–discharge cycle performance
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2015

Regioselective synthesis of chiral dimethyl-bis(ethylenedithio)tetrathiafulvalene sulfones

  • Flavia Pop and
  • Narcis Avarvari

Beilstein J. Org. Chem. 2015, 11, 1105–1111, doi:10.3762/bjoc.11.124

Graphical Abstract
  • time in the middle of 80s by Dunitz and Wallis through the synthesis of the (S,S,S,S)-enantiomer of tetramethyl-bis(ethylenedithio)tetrathiafulvalene (TM-BEDT-TTF) (Scheme 1) [1], thus opening opportunities towards the preparation of chiral molecular conductors [2]. Since then a large number of chiral
  • TTF derivatives have been prepared [3], especially those derived from bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) [4]. Although numerous derivatives have been prepared only ten years ago different transport properties were observed for enantiopure and racemic conducting salts based on
  • cation salts in the solid state, and subsequently, differences in their conducting properties can occur. A similar effect was observed more recently in the [TM-BEDT-TTF][I3] family of enantiopure and racemic semiconducting salts [9]. In all these examples the crystal-cell parameters were similar for the
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2015

Synthesis and characterization of the cyanobenzene-ethylenedithio-TTF donor

  • Sandrina Oliveira,
  • Dulce Belo,
  • Isabel C. Santos,
  • Sandra Rabaça and
  • Manuel Almeida

Beilstein J. Org. Chem. 2015, 11, 951–956, doi:10.3762/bjoc.11.106

Graphical Abstract
  • pure triethyl phosphite during 4 hours at 130 °C leading to the formation of 3 in relatively high yield (63%) (Scheme 1). This coupling reaction also gives rise to smaller amounts of BEDT-TTF (14% yield) and dicyanodibenzene tetrathiafulvalene (dcdb-TTF) [13] as byproducts resulting from homocoupling
  • [CNB-EDT-TTF]0/[CNB-EDT-TTF]+ and [CNB-EDT-TTF]+/[CNB-EDT-TTF]2+, respectively. Comparing the redox potentials of the new TTF electron donor 3 with the well-known BEDT-TTF donor also measured by us in the same conditions, as shown in Table 1, we can conclude that, as expected, the cyanobenzene group
PDF
Album
Supp Info
Letter
Published 03 Jun 2015

Copper ion salts of arylthiotetrathiafulvalenes: synthesis, structure diversity and magnetic properties

  • Longfei Ma,
  • Jibin Sun,
  • Xiaofeng Lu,
  • Shangxi Zhang,
  • Hui Qi,
  • Lei Liu,
  • Yongliang Shao and
  • Xiangfeng Shao

Beilstein J. Org. Chem. 2015, 11, 850–859, doi:10.3762/bjoc.11.95

Graphical Abstract
  • -based conducting materials are mainly produced as radical cation salts by electrochemical oxidation and CT complexes by chemical oxidation with electron acceptors [5][6]. Most Ar-S-TTFs possess redox potentials higher than that of bis(ethylenedithio)-TTF (BEDT-TTF) [33][34][35][36][37][38][39
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2015

Trifluoromethyl-substituted tetrathiafulvalenes

  • Olivier Jeannin,
  • Frédéric Barrière and
  • Marc Fourmigué

Beilstein J. Org. Chem. 2015, 11, 647–658, doi:10.3762/bjoc.11.73

Graphical Abstract
  • tetrathiafulvalene (TTF) derivatives with electron-rich alkyl (tetramethyltetrathiafulvalene: TMTTF, tetramethyltetraselenafulvalene: TMTSF) or thioalkyl (ethylenedithiotetrathiafulvalene: EDT-TTF, bis(ethylenedithio)tetrathiafulvalene: BEDT-TTF) substituents [1], investigations of radical cation salts of
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2015

Bis(vinylenedithio)tetrathiafulvalene analogues of BEDT-TTF

  • Erdal Ertas,
  • İlknur Demirtas and
  • Turan Ozturk

Beilstein J. Org. Chem. 2015, 11, 403–415, doi:10.3762/bjoc.11.46

Graphical Abstract
  • Gebze-Kocaeli, Turkey 10.3762/bjoc.11.46 Abstract This review aims to give an overview of the current status of our research on the synthesis of π-electron donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF, ET) analogues prepared from 1,8-diketones via a ring forming reaction. The new synthesized π
  • , led to the production of superconducting salts based on TTF type donors containing a heteroatom such as sulfur, selenium, oxygen, etc. [17][18][19][20]. Among a large number of tetrathiafulvalene analogues, bis(ethyleneditiho)tetrathiafulvalene (BEDT-TTF, 3), also known as ET, has been the most
  • solid state properties [35][36][37]. Bis(vinylenedithio)tetrathiafulvalene (BVDT-TTF) 4 (R = Ph, 4-CH3OC6H4, 4-BrC6H4, 4-CH3C6H4, 4-O2NC6H4, 2-thienyl) is a BEDT-TTF analogue possessing π-bonds with aromatic groups on the outer rings (Figure 1) [26][38][39][40][41]. Since BEDT-TTF has two ethylene units
PDF
Album
Review
Published 27 Mar 2015
Other Beilstein-Institut Open Science Activities