Search results

Search for "FPID" in Full Text gives 1 result(s) in Beilstein Journal of Organic Chemistry.

Recyclable hypervalent-iodine-mediated solid-phase peptide synthesis and cyclic peptide synthesis

  • Dan Liu,
  • Ya-Li Guo,
  • Jin Qu and
  • Chi Zhang

Beilstein J. Org. Chem. 2018, 14, 1112–1119, doi:10.3762/bjoc.14.97

Graphical Abstract
  • ) reagent FPID and (4-MeOC6H4)3P was successfully applied to solid-phase peptide synthesis and cyclic peptide synthesis. Four peptides with biological activities were synthesized through SPPS and the bioactive cyclic heptapeptide pseudostellarin D was obtained via solution-phase peptide synthesis. It is
  • worth noting that FPID can be readily regenerated after the peptide coupling reaction. Keywords: cyclic peptide; FPID; hypervalent iodine(III) reagent; recyclable; solid-phase peptide synthesis (SPPS); Introduction The amide bond is one of the most fundamental functional groups in organic chemistry
  • derivative of iodosodilactone 6-(3,5-bis(trifluoromethyl)phenyl)-1H,4H-2aλ3-ioda-2,3-dioxacyclopenta[hi]indene-1,4-dione (abbreviated as FPID, Figure 1) [29]. In combination with tris(4-methoxyphenyl)phosphine [(4-MeOC6H4)3P], FPID can efficiently mediate peptide coupling reactions within 30 minutes to
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2018
Other Beilstein-Institut Open Science Activities