Search results

Search for "dyeing" in Full Text gives 5 result(s) in Beilstein Journal of Organic Chemistry.

Dyes in modern organic chemistry

  • Heiko Ihmels

Beilstein J. Org. Chem. 2019, 15, 2798–2800, doi:10.3762/bjoc.15.272

Graphical Abstract
  • between research on dyes and industrial chemistry [2][3][4]. As a result, the success and strength of several chemical companies are originally based on dye chemistry. Although the traditional dyeing of textiles, hair, food, cosmetics, photography or printer colors, etc. is still highly relevant, organic
PDF
Editorial
Published 20 Nov 2019

A golden opportunity: benzofuranone modifications of aurones and their influence on optical properties, toxicity, and potential as dyes

  • Joza Schmitt and
  • Scott T. Handy

Beilstein J. Org. Chem. 2019, 15, 1781–1785, doi:10.3762/bjoc.15.171

Graphical Abstract
  • . In this study, the influence of substitution in the benzofuranone ring on the UV–vis spectrum is explored, as well as an initial screening of their toxicity and a qualitative preliminary study of their potential to act as fabric dyes. Keywords: aurone; dyeing; dyes; substitution effect; toxicity; UV
  • an interesting question for future study. Preliminary dyeing efforts As the initial inspiration for this work was the potential of aurones as textile dyes, two of the more interesting compounds, aurones 15 and 10 were used in a very preliminary attempt at fabric dyeing. Three processes were compared
  • : pre-, simultaneous, and post-mordanting. As can be seen in Figure 4, dyeing did occur in all cases. With aurone 10, simultaneous mordanting qualitatively appeared to be better, while with aurone 15 pre-mordanting was superior. Aurone 15 afforded more vibrant colors in general and also adhered to a
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2019

Functional panchromatic BODIPY dyes with near-infrared absorption: design, synthesis, characterization and use in dye-sensitized solar cells

  • Quentin Huaulmé,
  • Cyril Aumaitre,
  • Outi Vilhelmiina Kontkanen,
  • David Beljonne,
  • Alexandra Sutter,
  • Gilles Ulrich,
  • Renaud Demadrille and
  • Nicolas Leclerc

Beilstein J. Org. Chem. 2019, 15, 1758–1768, doi:10.3762/bjoc.15.169

Graphical Abstract
  • the sensitization solution [31]. For the dyeing solutions the concentration of the dye was 1 mM and the concentration of CDCA was 10 mM in a chloroform/ethanol mixture (1:1 in volume). The absorbance spectra of the resulting sensitized TiO2 layers are recorded and presented in Figure 5b. For both dyes
  • BOD-TTPA is observed from diluted solution to the anchored dye (see Figure 5a). Despite the same amount of CDCA in the dyeing solution (10 molar equivalents), this result suggests a higher tendency for π stacking interactions. Once anchored, BOD-TTPA exhibits consequently a broader absorption profile
  • than its alkylated counterpart BOD-TTPA-alk. Furthermore, the measured intensity of absorbance of the sensitized TiO2 layer is much higher for BOD-TPA than BOD-TTPA-alk in spite of the fact that the dyeing was performed with solutions containing exactly the same concentration of the dyes. The thickness
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Come-back of phenanthridine and phenanthridinium derivatives in the 21st century

  • Lidija-Marija Tumir,
  • Marijana Radić Stojković and
  • Ivo Piantanida

Beilstein J. Org. Chem. 2014, 10, 2930–2954, doi:10.3762/bjoc.10.312

Graphical Abstract
  • determination of binding contributions, which would clarify the observed selectivity. Although only the current widespread biochemical application is focused on ethidium bromide/propidium iodide dyes for DNA dyeing and cell viability tests, results summarised in this review pointed out the intriguing potential
PDF
Album
Review
Published 10 Dec 2014

Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids

  • Roman Matthessen,
  • Jan Fransaer,
  • Koen Binnemans and
  • Dirk E. De Vos

Beilstein J. Org. Chem. 2014, 10, 2484–2500, doi:10.3762/bjoc.10.260

Graphical Abstract
  • carboxylic acid which can be formed through electrocarboxylation, namely of CO2 itself. This complexing agent has applications in cleaning industry, dyeing processes and metallurgy [152]. Besides its easy synthesis under anhydrous conditions in a cell with sacrificial anode, it can also be produced in a
PDF
Album
Review
Published 27 Oct 2014
Other Beilstein-Institut Open Science Activities