Search results

Search for "episulfide" in Full Text gives 3 result(s) in Beilstein Journal of Organic Chemistry.

Synthesis of sulfur karrikin bioisosteres as potential neuroprotectives

  • Martin Pošta,
  • Václav Zima,
  • Lenka Poštová Slavětínská,
  • Marika Matoušová and
  • Petr Beier

Beilstein J. Org. Chem. 2022, 18, 549–554, doi:10.3762/bjoc.18.57

Graphical Abstract
  • closure (Scheme 1). A plausible mechanism for the cyclization of compounds 7 is the Darzens reaction to episulfide, followed by Barton–Kellogg-type reaction with triphenylphosphine and elimination of triphenylphosphine sulfide. Compound 8 showed lower germination activity than KAR1 [22], but achieved IC50
PDF
Album
Supp Info
Full Research Paper
Published 16 May 2022

Stimuli-responsive oligonucleotides in prodrug-based approaches for gene silencing

  • Françoise Debart,
  • Christelle Dupouy and
  • Jean-Jacques Vasseur

Beilstein J. Org. Chem. 2018, 14, 436–469, doi:10.3762/bjoc.14.32

Graphical Abstract
  • quantitatively converted to phosphorothioate ONs by carboxyesterase-mediated deacylation followed by the removal of the resulting S-(2-mercaptoethyl) group by cyclization to episulfide. For S-acyloxymethyl phosphorothiolates, hydrolysis of the ester catalyzed by the enzymes was followed by release of
PDF
Album
Review
Published 19 Feb 2018

The Eschenmoser coupling reaction under continuous-flow conditions

  • Sukhdeep Singh,
  • J. Michael Köhler,
  • Andreas Schober and
  • G. Alexander Groß

Beilstein J. Org. Chem. 2011, 7, 1164–1172, doi:10.3762/bjoc.7.135

Graphical Abstract
  • desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given. Keywords: activation energy; episulfide; flow chemistry; keto imine; kinetics; S-alkylation; sulfide contraction
  • ; triisopropyl phosphite; Introduction The Eschenmoser coupling [1][2] is a reaction method that yields β-enaminocarbonyl derivatives of type 4 by the elimination of sulfur (sulfide contraction) from an episulfide intermediate (Scheme 1). The reaction was described for the first time by Knott in 1955 [3] and
  • construction of the episulfide intermediate 6, which requires base catalysis (B). The sulfur extraction from the episulfides 6 or 8 yields the desired β-enaminocarbonyl derivative 4 or 9. However, the detailed reaction mechanism for the sulfur extraction step has not yet been fully proven and obviously depends
PDF
Album
Supp Info
Full Research Paper
Published 25 Aug 2011
Other Beilstein-Institut Open Science Activities