Search results

Search for "naringenin" in Full Text gives 5 result(s) in Beilstein Journal of Organic Chemistry.

Discrimination of β-cyclodextrin/hazelnut (Corylus avellana L.) oil/flavonoid glycoside and flavonolignan ternary complexes by Fourier-transform infrared spectroscopy coupled with principal component analysis

  • Nicoleta G. Hădărugă,
  • Gabriela Popescu,
  • Dina Gligor (Pane),
  • Cristina L. Mitroi,
  • Sorin M. Stanciu and
  • Daniel Ioan Hădărugă

Beilstein J. Org. Chem. 2023, 19, 380–398, doi:10.3762/bjoc.19.30

Graphical Abstract
  • corresponding flavanones hesperetin and naringenin and the flavonol quercetin, respectively. These compounds have a disaccharide moiety connected to the aglycones through an ether linkage with the hydroxy groups in the 7 and 3 positions (Figure 1a). On the other hand, silibinins (the main components of
PDF
Album
Supp Info
Full Research Paper
Published 28 Mar 2023

A Streptomyces P450 enzyme dimerizes isoflavones from plants

  • Run-Zhou Liu,
  • Shanchong Chen and
  • Lihan Zhang

Beilstein J. Org. Chem. 2022, 18, 1107–1115, doi:10.3762/bjoc.18.113

Graphical Abstract
  • . Interestingly, we found that CYP158C1 clusters together with a T3PKS gene in the S. cattleya genome, which is similar to the biflaviolin [30] and naringenin [31] biosynthetic gene clusters. The native function of these type-III polyketide synthase products is believed to be involved in the protection of the
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2022

Biomimetic synthesis and HPLC–ECD analysis of the isomers of dracocephins A and B

  • Viktor Ilkei,
  • András Spaits,
  • Anita Prechl,
  • Áron Szigetvári,
  • Zoltán Béni,
  • Miklós Dékány,
  • Csaba Szántay Jr,
  • Judit Müller,
  • Árpád Könczöl,
  • Ádám Szappanos,
  • Attila Mándi,
  • Sándor Antus,
  • Ana Martins,
  • Attila Hunyadi,
  • György Tibor Balogh,
  • György Kalaus (†),
  • Hedvig Bölcskei,
  • László Hazai and
  • Tibor Kurtán

Beilstein J. Org. Chem. 2016, 12, 2523–2534, doi:10.3762/bjoc.12.247

Graphical Abstract
  • , Eötvös utca 6, H-6720 Szeged, Hungary 10.3762/bjoc.12.247 Abstract Starting from racemic naringenin ((±)-1), a mixture of dracocephin A stereoisomers 6-(2”-pyrrolidinone-5”-yl)naringenin (±)-2a–d and its regioisomer, dracocephin B 8-(2”-pyrrolidinone-5”-yl)naringenin (±)-3a–d originally isolated from
  • conjugates of racemic naringenin ((±)-1) with pyrrolidine-2-one with C-6–C-5” and C-8–C-5” linkage, respectively. Due to the two chirality centers, four possible stereoisomers exist for each regioisomer, and accordingly, the isolated substances were verified to be 1:1 mixtures of two diastereoisomeric
  • °C, as described in the literature [5] (Scheme 2). In the next step, dracocephins A (±)-2a–d and B ((±)-3a–d) were prepared by reacting racemic naringenin ((±)-1) with the N-acylaminocarbinol ether (±)-9 in the presence of a catalytic amount of p-toluenesulfonic acid (PTS) in nitromethane at 101 °C
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2016

Physical properties and biological activities of hesperetin and naringenin in complex with methylated β-cyclodextrin

  • Waratchada Sangpheak,
  • Jintawee Kicuntod,
  • Roswitha Schuster,
  • Thanyada Rungrotmongkol,
  • Peter Wolschann,
  • Nawee Kungwan,
  • Helmut Viernstein,
  • Monika Mueller and
  • Piamsook Pongsawasdi

Beilstein J. Org. Chem. 2015, 11, 2763–2773, doi:10.3762/bjoc.11.297

Graphical Abstract
  • improve physical properties and biological activities of the two flavanones hesperetin and naringenin by complexation with β-cyclodextrin (β-CD) and its methylated derivatives (2,6-di-O-methyl-β-cyclodextrin, DM-β-CD and randomly methylated-β-CD, RAMEB). The free energies of inclusion complexes between
  • diagram showed the formation of a soluble complex of AL type, with higher increase in solubility and stability when hesperetin and naringenin were complexed with RAMEB. Solid complexes were prepared by freeze-drying, and the data from differential scanning calorimetry (DSC) confirmed the formation of
  • three different cancer cell lines. The overall results suggested that solubilities and bioactivities of both flavanones were increased by complexation with methylated β-CDs. Keywords: binding energy; bioactivity; cyclodextrins; hesperetin; naringenin; Introduction Flavonoids are secondary metabolites
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2015

Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes

  • Bodee Nutho,
  • Wasinee Khuntawee,
  • Chompoonut Rungnim,
  • Piamsook Pongsawasdi,
  • Peter Wolschann,
  • Alfred Karpfen,
  • Nawee Kungwan and
  • Thanyada Rungrotmongkol

Beilstein J. Org. Chem. 2014, 10, 2789–2799, doi:10.3762/bjoc.10.296

Graphical Abstract
  • understand the two flavonoids/β-CD complexes, hesperetin and naringenin complexes, in aqueous solution. The PM3 method was applied to calculate the energy regarding the antioxidant property of the flavonoid chysin in the complex with β-CD [32]. Interestingly, the molecular docking study on the fisetin/β-CD
  • cyclodextrin (~−2.9 ± 0.9 Å) whereas the A-ring is located at the center of the cavity (~0.5 ± 0.4 Å). Only less than 10% occurrence of the B-ring moving through the primary rim (d(CgB-ring − Cgβ-CD) < −4 Å) was observed. More frequent translocation was previously detected in the simulations of naringenin/β-CD
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2014
Other Beilstein-Institut Open Science Activities