Supporting Information
| Supporting Information File 1: The motion of a Janus UCNP capsule motor in 1% H2O2 solution. | ||
| Format: MOV | Size: 185.2 KB | Download |
| Supporting Information File 2: The motion of a Janus UCNP capsule motor in 3% H2O2 solution. | ||
| Format: MOV | Size: 189.1 KB | Download |
| Supporting Information File 3: The motion of a Janus UCNP capsule motor in 5% H2O2 solution. | ||
| Format: MOV | Size: 159.3 KB | Download |
| Supporting Information File 4: The motion of a Janus UCNP capsule motor in 10% H2O2 solution. | ||
| Format: MOV | Size: 221.3 KB | Download |
| Supporting Information File 5: The motion of a Janus UCNP capsule motor without luminescence quenching in 5% H2O2. | ||
| Format: MOV | Size: 30.3 KB | Download |
| Supporting Information File 6: The on–off luminescence detection of TNT using a Janus UCNP capsule motor. | ||
| Format: MOV | Size: 165.3 KB | Download |
Cite the Following Article
Janus-micromotor-based on–off luminescence sensor for active TNT detection
Ye Yuan, Changyong Gao, Daolin Wang, Chang Zhou, Baohua Zhu and Qiang He
Beilstein J. Nanotechnol. 2019, 10, 1324–1331.
https://doi.org/10.3762/bjnano.10.131
How to Cite
Yuan, Y.; Gao, C.; Wang, D.; Zhou, C.; Zhu, B.; He, Q. Beilstein J. Nanotechnol. 2019, 10, 1324–1331. doi:10.3762/bjnano.10.131
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.2 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Ju, X.; Chen, C.; Oral, C. M.; Sevim, S.; Golestanian, R.; Sun, M.; Bouzari, N.; Lin, X.; Urso, M.; Nam, J. S.; Cho, Y.; Peng, X.; Landers, F. C.; Yang, S.; Adibi, A.; Taz, N.; Wittkowski, R.; Ahmed, D.; Wang, W.; Magdanz, V.; Medina-Sánchez, M.; Guix, M.; Bari, N.; Behkam, B.; Kapral, R.; Huang, Y.; Tang, J.; Wang, B.; Morozov, K.; Leshansky, A.; Abbasi, S. A.; Choi, H.; Ghosh, S.; Borges Fernandes, B.; Battaglia, G.; Fischer, P.; Ghosh, A.; Jurado Sánchez, B.; Escarpa, A.; Martinet, Q.; Palacci, J.; Lauga, E.; Moran, J.; Ramos-Docampo, M. A.; Städler, B.; Herrera Restrepo, R. S.; Yossifon, G.; Nicholas, J. D.; Ignés-Mullol, J.; Puigmartí-Luis, J.; Liu, Y.; Zarzar, L. D.; Shields, C. W.; Li, L.; Li, S.; Ma, X.; Gracias, D. H.; Velev, O.; Sánchez, S.; Esplandiu, M. J.; Simmchen, J.; Lobosco, A.; Misra, S.; Wu, Z.; Li, J.; Kuhn, A.; Nourhani, A.; Maric, T.; Xiong, Z.; Aghakhani, A.; Mei, Y.; Tu, Y.; Peng, F.; Diller, E.; Sakar, M. S.; Sen, A.; Law, J.; Sun, Y.; Pena-Francesch, A.; Villa, K.; Li, H.; Fan, D. E.; Liang, K.; Huang, T. J.; Chen, X.-Z.; Tang, S.; Zhang, X.; Cui, J.; Wang, H.; Gao, W.; Kumar Bandari, V.; Schmidt, O. G.; Wu, X.; Guan, J.; Sitti, M.; Nelson, B. J.; Pané, S.; Zhang, L.; Shahsavan, H.; He, Q.; Kim, I.-D.; Wang, J.; Pumera, M. Technology Roadmap of Micro/Nanorobots. ACS nano 2025, 19, 24174–24334. doi:10.1021/acsnano.5c03911
- Muslu Yilmaz, E.; Dag, B.; Killioglu, I.; Eren, E.; Uygun Oksuz, A. Enzymatic bimetallic Cu-Ni micromotor sensor for xanthine detection. Journal of Food Engineering 2025, 388, 112382. doi:10.1016/j.jfoodeng.2024.112382
- Vijay, N.; Jeevanandham, S.; Ramasundaram, S.; Oh, T. H.; Selvan, S. T. Recent Advancements in Multimodal Chemically Powered Micro/Nanorobots for Environmental Sensing and Remediation. Chemosensors 2025, 13, 69. doi:10.3390/chemosensors13020069
- Mena-Giraldo, P.; Kaur, M.; Maurizio, S. L.; Mandl, G. A.; Capobianco, J. A. Janus Micromotors for Photophoretic Motion and Photon Upconversion Applications Using a Single Near-Infrared Wavelength. ACS applied materials & interfaces 2024, 16, 4249–4260. doi:10.1021/acsami.3c16454
- Wang, Q.; Yang, S.; Zhang, L. Untethered Micro/Nanorobots for Remote Sensing: Toward Intelligent Platform. Nano-micro letters 2023, 16, 40. doi:10.1007/s40820-023-01261-9
- Feng, J.; Li, X.; Xu, T.; Zhang, X.; Du, X. Photothermal-driven micro/nanomotors: From structural design to potential applications. Acta biomaterialia 2023, 173, 1–35. doi:10.1016/j.actbio.2023.11.018
- Jiang, L.; Liu, X.; Zhao, D.; Guo, J.; Ma, X.; Wang, Y. Intelligent sensing based on active micro/nanomotors. Journal of materials chemistry. B 2023, 11, 8897–8915. doi:10.1039/d3tb01163a
- Jang, B.; Ye, M.; Hong, A.; Wang, X.; Liu, X.; Bae, D.; Puigmartí Luis, J.; Pané, S. Catalytically Propelled Micro- and Nanoswimmers. Small science 2023, 3, 2300076. doi:10.1002/smsc.202300076
- Chen, G.; Zhu, F.; Gan, A. S.; Mohan, B.; Dey, K. K.; Xu, K.; Huang, G.; Cui, J.; Solovev, A. A.; Mei, Y. Towards the next generation nanorobots. Next Nanotechnology 2023, 2, 100019. doi:10.1016/j.nxnano.2023.100019
- Panda, S. K.; Kherani, N. A.; Debata, S.; Singh, D. P. Bubble-propelled micro/nanomotors: a robust platform for the detection of environmental pollutants and biosensing. Materials Advances 2023, 4, 1460–1480. doi:10.1039/d2ma00798c
- Alabusheva, V. S.; Shilovskikh, V. V.; Bridenko, L. A.; Gurzhiy, V. V.; Skorb, E. V. Synthesis of Catalytic Microswimmers Based on Anisotropic Platinum Sorption on Melamine Barbiturate Supramolecular Structures. Advanced Intelligent Systems 2023, 5. doi:10.1002/aisy.202200436
- Xu, D.; Li, C.; Li, W.; Lin, B.; Lv, R. Recent advances in lanthanide-doped up-conversion probes for theranostics. Frontiers in chemistry 2023, 11, 1036715. doi:10.3389/fchem.2023.1036715
- Cai, L.; Xu, D.; Zhang, Z.; Li, N.; Zhao, Y. Tailoring Functional Micromotors for Sensing. Research (Washington, D.C.) 2023, 6, 0044. doi:10.34133/research.0044
- Liu, W.; Liu, Y.; Li, H.; Nie, H.; Tian, M.; Long, W. Biomedical Micro‐/Nanomotors: Design, Imaging, and Disease Treatment. Advanced Functional Materials 2023, 33. doi:10.1002/adfm.202212452
- Li, X.; Ge, W.; Guo, S.; Bai, J.; Hong, W. Characterization and Application of Supramolecular Junctions. Angewandte Chemie (International ed. in English) 2023, 62, e202216819. doi:10.1002/anie.202216819
- Li, X.; Ge, W.; Guo, S.; Bai, J.; Hong, W. Characterization and Application of Supramolecular Junctions. Angewandte Chemie 2023, 135. doi:10.1002/ange.202216819
- Zhang, Q.; Yan, Y.; Liu, J.; Wu, Y.; He, Q. Supramolecular colloidal motors via chemical self-assembly. Current Opinion in Colloid & Interface Science 2022, 62, 101642. doi:10.1016/j.cocis.2022.101642
- Guo, J.; Li, Y.; Wang, B.; Chen, W.; Chen, S.; Liu, S.; Ma, X.; Guo, J. Self-propelled Janus nanomotor as active probe for detection of pepsinogen by lateral flow immunoassay. Mikrochimica acta 2022, 189, 468. doi:10.1007/s00604-022-05538-5
- Debata, S.; Kherani, N. A.; Panda, S. K.; Singh, D. P. Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium. Journal of materials chemistry. B 2022, 10, 8235–8243. doi:10.1039/d2tb01367c
- Ren, J.; Hu, P.; Ma, E.; Zhou, X.; Wang, W.; Zheng, S.; Wang, H. Enzyme-powered nanomotors with enhanced cell uptake and lysosomal escape for combined therapy of cancer. Applied Materials Today 2022, 27, 101445. doi:10.1016/j.apmt.2022.101445