CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

Fakher Laatar, Hatem Moussa, Halima Alem, Lavinia Balan, Emilien Girot, Ghouti Medjahdi, Hatem Ezzaouia and Raphaël Schneider
Beilstein J. Nanotechnol. 2017, 8, 2741–2752. https://doi.org/10.3762/bjnano.8.273

Supporting Information

Supporting Information File 1: Additional figures.
Format: PDF Size: 530.6 KB Download

Cite the Following Article

CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity
Fakher Laatar, Hatem Moussa, Halima Alem, Lavinia Balan, Emilien Girot, Ghouti Medjahdi, Hatem Ezzaouia and Raphaël Schneider
Beilstein J. Nanotechnol. 2017, 8, 2741–2752. https://doi.org/10.3762/bjnano.8.273

How to Cite

Laatar, F.; Moussa, H.; Alem, H.; Balan, L.; Girot, E.; Medjahdi, G.; Ezzaouia, H.; Schneider, R. Beilstein J. Nanotechnol. 2017, 8, 2741–2752. doi:10.3762/bjnano.8.273

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 740.7 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Yu, L.; Liu, Y.; Duan, L.; Zhang, Y.; Rodrigues, L. A.; Reddy, D. A.; Zhu, H. Construction of SrTiO3/TiO2 heterojunction by in-situ ion exchange method to enhance photochemical performance. Materials Science and Engineering: B 2024, 299, 117010. doi:10.1016/j.mseb.2023.117010
  • Lai, C.; Zhang, T.; Chen, Y.; Chen, J.; Zhong, J.; Li, J.; Huang, S.; Dou, L.; Li, M.; Jiang, Z. In-situ preparation of N-doped Bi0/OVs-BiVO4 photocatalysts with enhanced photocatalytic properties. Journal of Alloys and Compounds 2024, 972, 172852. doi:10.1016/j.jallcom.2023.172852
  • Elmorsy, E. S.; Amer, W. A.; Mahrous, A.; Ayad, M. M. Insight into the novel ZIF-8@N-CQDs/ZIF-67 nanocomposite for photocatalytic degradation of methylene blue under visible light irradiation. Materials Science and Engineering: B 2023, 298, 116900. doi:10.1016/j.mseb.2023.116900
  • Li, Y.-L.; Tian, J.; Shi, D.-J.; Dong, J.-X.; Yue, Z.; Li, G.; Huang, W.-P.; Zhang, S.-M.; Zhu, B.-L. CdSe/TiO2NTs Heterojunction-Based Nonenzymatic Photoelectrochemical Sensor for Glucose Detection. Langmuir : the ACS journal of surfaces and colloids 2023, 39, 14935–14944. doi:10.1021/acs.langmuir.3c01685
  • Gadge, A. S.; Janbandhu, S. Y.; Sukhadeve, G. K.; Kumar, R.; Gajbhiye, C. D.; Gedam, R. S. TiO2 Nanoparticles for Methylene Blue Dye Degradation: Effect of Calcination Temperature. ECS Journal of Solid State Science and Technology 2023, 12, 86004–086004. doi:10.1149/2162-8777/acf06f
  • Kannan, N.; Venkatesh, P. S.; Babu, M. G.; Paulraj, G.; Jeganathan, K. Hydrothermally synthesized rGO-BiVO4 nanocomposites for photocatalytic degradation of RhB. Chemical Physics Impact 2023, 6, 100230. doi:10.1016/j.chphi.2023.100230
  • Gayathri, K.; Vinothkumar, K.; Teja, Y.; Al-Shehri, B. M.; Selvaraj, M.; Sakar, M.; Balakrishna, R. G. Ligand-mediated band structure engineering and physiochemical properties of UiO-66 (Zr) metal-organic frameworks (MOFs) for solar-driven degradation of dye molecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 653, 129992. doi:10.1016/j.colsurfa.2022.129992
  • Lopis, A. D.; Choudhari, K.; Kanakikodi, K. S.; Maradur, S. P.; Kulkarni, S. D. Selective, conformal deposition of silver on heterojunction under direct sunlight: Plasmon enhanced photocatalysis. Materials Research Bulletin 2022, 154, 111929. doi:10.1016/j.materresbull.2022.111929
  • Feng, X.; Li, X.; Su, B.; Ma, J. Solid-phase fabrication of TiO2/Chitosan-biochar composites with superior UV–vis light driven photocatalytic degradation performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 648, 129114. doi:10.1016/j.colsurfa.2022.129114
  • Zahedifar, M.; Seyedi, N.; Razavi, R. In situ fabrication of Ag2S/Ag2SO4 on the chitosan NP matrix for enhanced photodegradation of rhodamine B dye contaminant under visible light. Biomass Conversion and Biorefinery 2022. doi:10.1007/s13399-022-03094-9
  • Lopis, A. D.; Choudhari, K.; Sai, R.; Kanakikodi, K. S.; Maradur, S. P.; Shivashankar, S.; Kulkarni, S. D. Laddered type-1 heterojunction: Harvesting full-solar-spectrum in scavenger free photocatalysis. Solar Energy 2022, 240, 57–68. doi:10.1016/j.solener.2022.05.022
  • Wang, Y.; Li, R.; Wu, Q.; Yang, Z.; Fan, F.; Li, Y.; Jiang, G. Enhanced Photoelectrocatalytic Activity of TiO2 Nanowire Arrays via Copolymerized G-C3N4 Hybridization. Energies 2022, 15, 4180. doi:10.3390/en15124180
  • Sathish Kumar, S.; Valanarasu, S.; Gunavathy, K. V.; Vinoth, S.; Haunsbhavi, K.; Alagarasan, D.; Deva Arun Kumar, K.; Ubaidullah, M.; F. Shaikh, S.; Pandit, B. Enhancing the photodetection property of CdSe thin films via thermal evaporation technique: role of substrate temperature. Physica Scripta 2022, 97, 55807–055807. doi:10.1088/1402-4896/ac619c
  • Ramalingam, G.; Magdalane, C. M.; Kumar, B. A.; Yuvakkumar, R.; Ravi, G.; Jothi, A. I.; Rotte, N. K.; Murugadoss, G.; Ananth, A. Enhanced visible light-driven photocatalytic performance of CdSe nanorods. Environmental research 2021, 203, 111855. doi:10.1016/j.envres.2021.111855
  • Pattappan, D.; Vargheese, S.; Kavya, K. V.; Kumar, R. R.; Haldorai, Y. Metal-organic frameworks with different oxidation states of metal nodes and aminoterephthalic acid ligand for degradation of Rhodamine B under solar light. Chemosphere 2021, 286, 131726. doi:10.1016/j.chemosphere.2021.131726
  • Ahmed, M. R.; Ali, H. M.; Hasaneen, M. Influence of different types of substrates on the physical properties of CdSe films. Physica B: Condensed Matter 2021, 608, 412747. doi:10.1016/j.physb.2020.412747
  • Mohamed, N. B. H.; Bouzidi, M.; Brahim, N. B.; Sellaoui, L.; Haouari, M.; Ezzaouia, H.; Bonilla-Petriciolet, A. Impact of the stacking fault and surface defects states of colloidal CdSe nanocrystals on the removal of reactive black 5. Materials Science and Engineering: B 2021, 265, 115029. doi:10.1016/j.mseb.2020.115029
  • Rovisco, A.; Branquinho, R.; Deuermeier, J.; Freire, T.; Fortunato, E.; Martins, R.; Barquinha, P. Shape Effect of Zinc-Tin Oxide Nanostructures on Photodegradation of Methylene Blue and Rhodamine B under UV and Visible Light. ACS Applied Nano Materials 2021, 4, 1149–1161. doi:10.1021/acsanm.0c02782
  • Ruimin, H.; Tao, F.; Yang, J.; Xiao, H.; Liu, Y.; Lu, M. Ultrasound and microwave technology for flake-TiO2 growth and immobilization on cotton fabrics in micro-dissolution process. Materials Chemistry and Physics 2020, 249, 123036. doi:10.1016/j.matchemphys.2020.123036
  • Borras, M. C.; Sluyter, R.; Barker, P. J.; Konstantinov, K.; Bakand, S. Y2O3 decorated TiO2 nanoparticles: Enhanced UV attenuation and suppressed photocatalytic activity with promise for cosmetic and sunscreen applications. Journal of photochemistry and photobiology. B, Biology 2020, 207, 111883. doi:10.1016/j.jphotobiol.2020.111883

Patents

  • DU JIMIN; WANG WEIMIN; LI SUJUAN; YANG MENGKE; HAN YUMIN; LI KAIDI. Preparation method and application for morphology-controlled CdSe-modified porous TiO2 material. CN 108201890 A, June 26, 2018.
Other Beilstein-Institut Open Science Activities