Nanocellulose: Recent advances and its prospects in environmental remediation

Katrina Pui Yee Shak, Yean Ling Pang and Shee Keat Mah
Beilstein J. Nanotechnol. 2018, 9, 2479–2498. https://doi.org/10.3762/bjnano.9.232

Cite the Following Article

Nanocellulose: Recent advances and its prospects in environmental remediation
Katrina Pui Yee Shak, Yean Ling Pang and Shee Keat Mah
Beilstein J. Nanotechnol. 2018, 9, 2479–2498. https://doi.org/10.3762/bjnano.9.232

How to Cite

Shak, K. P. Y.; Pang, Y. L.; Mah, S. K. Beilstein J. Nanotechnol. 2018, 9, 2479–2498. doi:10.3762/bjnano.9.232

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 641.2 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, M.; Xu, T.; Zhao, Q.; Liu, K.; Liang, D.; Si, C. Cellulose-based materials for carbon capture and conversion. Carbon Capture Science & Technology 2024, 10, 100157. doi:10.1016/j.ccst.2023.100157
  • Trubetskaya, A.; Lê, H. Q.; Leppiniemi, J.; Koso, T.; Välisalmi, T.; Linder, M. B.; Pisano, I.; Dou, J.; Leahy, J.; Kontturi, E. Microwave hydrolysis, as a sustainable approach in the processing of seaweed for protein and nanocellulose management. Algal Research 2024, 78, 103406. doi:10.1016/j.algal.2024.103406
  • Sadare, O. O.; Paile, B.; Moothi, K. Adsorptive removal of phenol from synthetic wastewater using hexadecyltrimethylammonium bromide-functionalized cellulose nanocrystal (HDTMA-Br/CNCs). Chemical Engineering Communications 2024, 1–11. doi:10.1080/00986445.2024.2303751
  • Olawuni, O. A.; Sadare, O. O.; Moothi, K. The adsorption routes of 4IR technologies for effective desulphurization using cellulose nanocrystals: Current trends, challenges, and future perspectives. Heliyon 2024, 10, e24732. doi:10.1016/j.heliyon.2024.e24732
  • Okuda, H.; Inada, M.; Konishi, T.; Kawashima, N.; Wada, T.; Okiji, T.; Uo, M. Improvement of the setting properties of mineral trioxide aggregate cements using cellulose nanofibrils. Dental materials journal 2023, 43, 106–111. doi:10.4012/dmj.2023-220
  • Doan, K. Q. T.; Chiang, K. Y. Statistical optimization of cellulose nanocrystal from cotton cloth waste using sulfuric acid hydrolysis and response surface methodology. International Journal of Environmental Science and Technology 2023, 21, 5691–5704. doi:10.1007/s13762-023-05384-9
  • Das, S.; Singh, C. K.; Sodhi, K. K.; Singh, V. K. Circular economy approaches for water reuse and emerging contaminant mitigation: innovations in water treatment. Environment, Development and Sustainability 2023. doi:10.1007/s10668-023-04183-z
  • Pitcher, M. L.; Koshani, R.; Sheikhi, A. Chemical structure–property relationships in nanocelluloses. Journal of Polymer Science 2023, 62, 9–31. doi:10.1002/pol.20230558
  • Chauhan, P.; Sharma, M.; Sharma, R.; Kumar, D. doi:10.1002/9781394172887.ch10
  • Setter, C.; Mascarenhas, A. R. P.; Dias, M. C.; de Oliveira Meira, A. C. F.; da Silva Carvalho, N. T.; Lorenço, M. S.; Martins, M. A.; Tonoli, G. H. D.; de Oliveira, T. J. P. Surface modification of cellulosic nanofibrils by spray drying: Drying yield and microstructural, thermal and chemical characterization. Industrial Crops and Products 2023, 201, 116899. doi:10.1016/j.indcrop.2023.116899
  • Sharma, N.; Allardyce, B. J.; Rajkhowa, R.; Agrawal, R. Rice straw-derived cellulose: a comparative study of various pre-treatment technologies and its conversion to nanofibres. Scientific reports 2023, 13, 16327. doi:10.1038/s41598-023-43535-7
  • Ivbanikaro, A. E.; Okonkwo, J. O.; Sadiku, E. R.; Maepa, C. E. Recent development in the formation and surface modification of cellulose-bead nanocomposites as adsorbents for water purification: a comprehensive review. Journal of Polymer Engineering 2023, 43, 680–714. doi:10.1515/polyeng-2023-0056
  • Zaini, H. M.; Saallah, S.; Roslan, J.; Sulaiman, N. S.; Munsu, E.; Wahab, N. A.; Pindi, W. Banana biomass waste: A prospective nanocellulose source and its potential application in food industry - A review. Heliyon 2023, 9, e18734. doi:10.1016/j.heliyon.2023.e18734
  • Nitodas, S. S.; Skehan, M.; Liu, H.; Shah, R. Current and Potential Applications of Green Membranes with Nanocellulose. Membranes 2023, 13, 694. doi:10.3390/membranes13080694
  • Sanchez-Salvador, J. L.; Xu, H.; Balea, A.; Negro, C.; Blanco, A. Nanocellulose from a colloidal material perspective. Frontiers in Materials 2023, 10. doi:10.3389/fmats.2023.1231404
  • Ahmed, M. Z.; Mutahir, S.; Intisar, A.; Muhammad, N.; Mutahir, Z. Probe sonicated cotton cellulose fibers treated with bone conditioned medium for optimum cell growth and mineralization. Cellulose 2023, 30, 7497–7518. doi:10.1007/s10570-023-05386-3
  • Tadesse, M. G.; Lübben, J. F. Green Nanomaterials: Processing, Characterization and Applications. Mechanics of Nanomaterials and Polymer Nanocomposites; Springer Nature Singapore, 2023; pp 87–104. doi:10.1007/978-981-99-2352-6_5
  • Ghilan, A.; Nicu, R.; Ciolacu, D. E.; Ciolacu, F. Insight into the Latest Medical Applications of Nanocellulose. Materials (Basel, Switzerland) 2023, 16, 4447. doi:10.3390/ma16124447
  • da Costa, F. A. T.; Parra, D. F.; Cardoso, E. C. L.; Güven, O. PLA, PBAT, Cellulose Nanocrystals (CNCs), and Their Blends: Biodegradation, Compatibilization, and Nanoparticle Interactions. Journal of Polymers and the Environment 2023, 31, 4662–4690. doi:10.1007/s10924-023-02899-7
  • Azman, N. A. N. M. N.; Krishnasamy, K.; Asmadi, M.; Adrus, N.; See, W. Q.; Ayub, M.; Othman, M. H. D.; Omar, W. N. N. W.; Amin, N. A. S. Cellulose Morphologies for Energy Applications. Regenerated Cellulose and Composites; Springer Nature Singapore, 2023; pp 197–221. doi:10.1007/978-981-99-1655-9_8
Other Beilstein-Institut Open Science Activities