Search results

Search for "iron oxide nanoparticles" in Full Text gives 96 result(s) in Beilstein Journal of Nanotechnology.

Microplastic pollution in Himalayan lakes: assessment, risks, and sustainable remediation strategies

  • Sameeksha Rawat,
  • S. M. Tauseef and
  • Madhuben Sharma

Beilstein J. Nanotechnol. 2025, 16, 2144–2167, doi:10.3762/bjnano.16.148

Graphical Abstract
  • systems that combine nanotechnology with biological components (e.g., enzymes), are emerging as environmentally benign solutions in addition to independent nanoparticles. Enzyme–nanoparticle conjugates can target certain plastic polymers, enabling more rapid and targeted breakdown. Iron oxide
  • nanoparticles have been shown to break down PS in both UV and natural light, which suggests they could be used in a range of environmental conditions [44]. Another prospective application is the integration of nanomaterials into filtration membranes, which results in the development of hybrid systems that are
PDF
Album
Supp Info
Review
Published 25 Nov 2025

On the road to sustainability – application of metallic nanoparticles obtained by green synthesis in dentistry: a scoping review

  • Lorena Pinheiro Vasconcelos Silva,
  • Joice Catiane Soares Martins,
  • Israel Luís Carvalho Diniz,
  • Júlio Abreu Miranda,
  • Danilo Rodrigues de Souza,
  • Éverton do Nascimento Alencar,
  • Moan Jéfter Fernandes Costa and
  • Pedro Henrique Sette-de-Souza

Beilstein J. Nanotechnol. 2025, 16, 1851–1862, doi:10.3762/bjnano.16.128

Graphical Abstract
  • iron oxide nanoparticles doped with silver (Ag-Fe2O3) exhibited dual properties, that is, antimicrobial protection and stimulation of osteoblastic activity. In prosthodontics, biogenic nanoparticles have been incorporated into denture base resins and soft liners, demonstrating significant antifungal
PDF
Album
Review
Published 22 Oct 2025

Cross-reactivities in conjugation reactions involving iron oxide nanoparticles

  • Shoronia N. Cross,
  • Katalin V. Korpany,
  • Hanine Zakaria and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2025, 16, 1504–1521, doi:10.3762/bjnano.16.106

Graphical Abstract
  • Shoronia N. Cross Katalin V. Korpany Hanine Zakaria Amy Szuchmacher Blum Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada 10.3762/bjnano.16.106 Abstract The preparation of multimodal nanoparticles by capping magnetic iron oxide nanoparticles
  • erroneous conclusions about the efficacy of conjugation reactions, which can have detrimental impacts on the functionality and safety of IONPs in biomedical applications. Keywords: click chemistry; copper-catalyzed azide–alkyne cycloaddition; disulfide reduction; iron oxide nanoparticles; thiol–maleimide
  • Michael addition; Introduction Iron oxide nanoparticles (IONPs) have been the subject of an immense body of research in the field of biomedicine, where their magnetic properties are appealing for such applications as MRI contrast agents [1], tumor hyperthermia [2], and magnetic drug delivery [3
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
PDF
Album
Review
Published 27 Aug 2025

Better together: biomimetic nanomedicines for high performance tumor therapy

  • Imran Shair Mohammad,
  • Gizem Kursunluoglu,
  • Anup Kumar Patel,
  • Hafiz Muhammad Ishaq,
  • Cansu Umran Tunc,
  • Dilek Kanarya,
  • Mubashar Rehman,
  • Omer Aydin and
  • Yin Lifang

Beilstein J. Nanotechnol. 2025, 16, 1246–1276, doi:10.3762/bjnano.16.92

Graphical Abstract
  • phage for targeted drug delivery. In a recent study, the DNA of the M13 phage was modified to encode for SPARC binding peptide and cathepsin B cleavage peptide. Then, superparamagnetic iron oxide nanoparticles were covalently bonded to cathepsin B expressed on M13 phages to track their intracellular
PDF
Album
Review
Published 05 Aug 2025

Structural and magnetic properties of microwave-synthesized reduced graphene oxide/VO2/Fe2O3 nanocomposite

  • Sumanta Sahoo,
  • Ankur Sood and
  • Sung Soo Han

Beilstein J. Nanotechnol. 2025, 16, 921–932, doi:10.3762/bjnano.16.70

Graphical Abstract
  • ]. The presence of magnetic behavior in GVF further promotes the occurrence of iron oxide nanoparticles. Moreover, the low magnetic moment of GVF compared to that of native α-Fe2O3 nanoparticles (mostly synthesized through the Fe-based aqueous salt) could account for the low levels of α-Fe2O3 formed
PDF
Album
Full Research Paper
Published 20 Jun 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
  • , these technologies also pave the way for developing therapeutic strategies aimed at inhibiting the formation of toxic AβOs. Liu et al. synthesized multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with a specific scFv antibody (W20) targeting AβOs and a class-A scavenger
PDF
Album
Review
Published 22 Apr 2025

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
  • production, effectively reducing collagen type I deposition and mitigating fibrosis. Additional nanomaterials such as superparamagnetic iron oxide nanoparticles (SPIONs) and chitosan-based NPs are engineered with liver-cell-specific ligands like lactose or galactose, enhancing their specificity for treating
PDF
Album
Review
Published 31 Jan 2025

Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility

  • Shushanik A. Kazaryan,
  • Seda A. Oganian,
  • Gayane S. Vardanyan,
  • Anatolie S. Sidorenko and
  • Ashkhen A. Hovhannisyan

Beilstein J. Nanotechnol. 2024, 15, 1593–1602, doi:10.3762/bjnano.15.125

Graphical Abstract
  • Biochemistry, Koryun St 2, Yerevan, Armenia Ghitu Institute of Electronic Engineering and Nanotechnologies of Technical University of Moldova, Chisinau, Moldova 10.3762/bjnano.15.125 Abstract Thanks to their simple synthesis, controlled physical properties, and minimal toxicity, iron oxide nanoparticles
  • . Experimental Synthesis and characterization of iron oxide nanoparticles The synthesis of iron oxide (Fe3O4) nanoparticles was carried out using a modified coprecipitation method with oleic acid as a stabilizer. 10 mL of 1 M FeSO4·7H2O and 10 mL of 2 M FeCl3·6H2O were added to 10 mL 4 M NaOH and 1 mL oleic acid
PDF
Album
Full Research Paper
Published 11 Dec 2024

A review on the structural characterization of nanomaterials for nano-QSAR models

  • Salvador Moncho,
  • Eva Serrano-Candelas,
  • Jesús Vicente de Julián-Ortiz and
  • Rafael Gozalbes

Beilstein J. Nanotechnol. 2024, 15, 854–866, doi:10.3762/bjnano.15.71

Graphical Abstract
  • coordination numbers [24]. Alternatively, Kotzabasaki et al. also codified the composition of iron oxide nanoparticles with a single categorical descriptor that encodes the crystal structure of the main component (in this case as maghemite or magnetite) [25]. Alternatively, some descriptors are focused on the
PDF
Album
Supp Info
Review
Published 11 Jul 2024

When nanomedicines meet tropical diseases

  • Eder Lilia Romero,
  • Katrien Van Bocxlaer and
  • Fabio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 830–832, doi:10.3762/bjnano.15.69

Graphical Abstract
  • oxide nanoparticles (SPIONs) for treating cutaneous lesions caused by Leishmania amazonensis. The selectivity index for intracellular amastigotes was more than 240 times higher compared to that of current prescribed drugs to treat the disease, making SPIONs strong candidates for a new therapeutic
  • , Morilla and collaborators presented a critical review on nanomedicines and Chagas disease, highlighting the potential of oral nanocrystals and parenteral nano-immunostimulants to treat this NTD [3]. Moving to leishmaniases, Verçoza et al. evaluated the therapeutic potential of green superparamagnetic iron
PDF
Editorial
Published 08 Jul 2024

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • also includes cancer imaging and diagnosis such as the MRI imaging agent Resovist, carboxydextran-coated superparamagnetic iron oxide nanoparticles approved for liver contrast-enhanced MRI102 [87]. Another 10% are nanocrystals, such as Tricor (approved in 2004) or Triglide (approved in 2005), used to
PDF
Album
Review
Published 27 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • photothermal therapy on a single platform has been developed in the form of vinorelbine-loaded polydopamine-coated iron oxide nanoparticles. Vinorelbine (VNB) is loaded on the surface of iron oxide nanoparticles produced by a solvothermal technique after coating with polydopamine (PDA) with varying weight
  • , magnetic response, and controlled drug release with photothermal effect brings a different perspective to advanced cancer treatment research. Keywords: drug efficacy; iron oxide nanoparticles; photothermal; solvothermal method; Introduction Cancer is a widespread condition characterized by the
  • ’ magnetization cycle, as Bloch and Neel theorized [11][13]. Superparamagnetic iron oxide nanoparticles for drug delivery, diagnosis, and cancer therapy have gained wider acceptance in biomedical applications [14]. They have received notable attention in clinical applications such as early disease diagnosis (e.g
PDF
Album
Full Research Paper
Published 28 Feb 2024

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • nanocarrier that can be loaded with the chemotherapeutic medication chlorambucil and magnetic resonance imaging agents (e.g., iron oxide nanoparticles and near-infrared fluorophore IR780) for theragnostics. Poly(lactic-co-glycolic acid) was combined with the aforementioned ingredients to generate poly(vinyl
  • of these systems to serve as medication and imaging agent carriers for cancer treatment and diagnostics, respectively. Keywords: cancer; chlorambucil; F127-folate; IR780; iron oxide nanoparticles; PLGA; theragnostics; Introduction Theragnostic nanoparticles (NPs) are a diagnostic and therapeutic
  • Sigma-Aldrich. Dulbecco's Modified Eagle Medium (DMEM) (11965092), fetal bovine serum (FBS) (MT35010CV), antibiotic (15-240-062), and trypsin (25-200-056) were purchased from Gibco, Fisher Scientific. All other solvents and reagents were of chemical grade. Synthesis of iron oxide nanoparticles Iron
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • , iron oxide nanoparticles are the most prominent ones because of their biocompatibility, low toxicity, ease of synthesis, and high photothermal conversion efficiency. The influence of a magnetic field can also increase temperature generation by such nanoparticles, which is called magnetic hyperthermia
  • . Since iron oxide nanoparticles absorb in the NIR region, irradiating them with a proper source will produce heat, which makes them suitable for theranostic purposes [32][42][43]. Carbon nanomaterials: Carbon-based materials have been identified as promising candidates for photothermal applications
  • photothermal properties are superparamagnetic iron oxide nanoparticles (SPIONs), which are commonly used as a magnetic hyperthermia agent. Because of the excellent absorption in the NIR region, they have been investigated also as photothermal agents [68]. Iron oxide nanoparticles have better stability and
PDF
Album
Review
Published 04 Oct 2023

Green SPIONs as a novel highly selective treatment for leishmaniasis: an in vitro study against Leishmania amazonensis intracellular amastigotes

  • Brunno R. F. Verçoza,
  • Robson R. Bernardo,
  • Luiz Augusto S. de Oliveira and
  • Juliany C. F. Rodrigues

Beilstein J. Nanotechnol. 2023, 14, 893–903, doi:10.3762/bjnano.14.73

Graphical Abstract
  • The main goal of this work was to evaluate the therapeutic potential of green superparamagnetic iron oxide nanoparticles (SPIONs) produced with coconut water for treating cutaneous leishmaniasis caused by Leishmania amazonensis. Optical and electron microscopy techniques were used to evaluate the
  • effort on the search for new treatments for different diseases. Its main objective is to develop therapies with higher specificity, effectiveness, and safety, as well as less toxicity [6]. One interesting class of nanomaterials in medicine are superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs
  • . It is the first time that superparamagnetic iron oxide nanoparticles SPIONs are observed inside the Leishmania spp and the parasitophorous vacuole. Chemical element mapping analysis by scanning electron microscopy confirmed the ferrous nature of the nanoparticle aggregates. These results prove the
PDF
Album
Full Research Paper
Published 30 Aug 2023

Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field

  • Ruslan A. Rytov and
  • Nikolai A. Usov

Beilstein J. Nanotechnol. 2023, 14, 485–493, doi:10.3762/bjnano.14.39

Graphical Abstract
  • simulations using the stochastic Landau–Lifshitz equation are performed to study magnetization dynamics of dilute assemblies of iron oxide nanoparticles exposed to an alternating (ac) magnetic field with an amplitude Hac = 200 Oe and a frequency f = 300 kHz and a static (dc) magnetic field in the range Hdc
  • paper, numerical simulations of the stochastic Landau–Lifshitz equation are used to study the dynamics of magnetization in dilute, randomly oriented assemblies of iron oxide nanoparticles under the combined action of ac and dc magnetic fields. It is shown that for nanoparticles with a diameter D < 25 nm
  • , the SAR of the assembly monotonically decreases with increasing Hdc, regardless of the angle between the ac and dc fields. Complete suppression of the SAR in this case occurs at Hdc ≥ Hac. Therefore, iron oxide nanoparticles with diameters D = 20–25 nm seem preferable for use in combined MPI-MH
PDF
Album
Full Research Paper
Published 14 Apr 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • oxidation, improve biocompatibility, enhance colloidal stability, and enhance targeting), enabling the ablation of tumor tissues by thermal energy [79]. MDA-MB-231 cell membrane-coated NPs loaded with superparamagnetic iron oxide nanoparticles (SPIONs) and PTX were designed for the combination treatment of
PDF
Album
Review
Published 27 Feb 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • . Keywords: Fe(III) acetylacetonate; iron oxide nanoparticles; maghemite; magnetic nanoparticles; magnetite; thermal decomposition synthesis; Introduction Magnetic nanoparticles are increasingly being used in various fields thanks to the recent progress in their controlled synthesis and knowledge of their
  • particles from oxidation. Moreover, the magnetic properties of magnetic nanoparticles (NPM) significantly depend on their size [8]. Iron oxide nanoparticles (>100 nm in size) are typically multidomain and ferromagnetic, whereas nanoparticles (<100 nm in size) are usually single domain [9]. The further
  • mono- and dioxide, hydrogen, higher ketones, and hydrocarbons, as well as partial reduction of Fe(III) to Fe(II), results in the formation of magnetic iron oxide nanoparticles [35]. Excess of higher carboxylic acid that has not been bound to the iron salt, did not undergo thermolysis, and is likely to
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • software. Regarding this, a test data volume filled with ellipsoids has been generated (Figure 3). Again, size, shape, position, and orientation of the ellipsoids have a Gaussian distribution in space, this time without the constraint of no overlap. Experimentally obtained system A system of iron oxide
  • nanoparticles has been used for further tests. A −67 to +67 tomographic tilt series has been obtained with 1° steps. The series has been aligned using Tomviz [31] and ImageJ [32] software. The aligned series has been reconstructed using Genfire. The Rietveld refinement of the XRD spectra (Figure 4a) revealed
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • , whereas exposure to and subsequent absorption of NIR light by iron oxide nanoparticles promotes NIR-induced hyperthermia [10]. Although magnetic hyperthermia has been widely used in biomedical research, it is subject to several limitations such as the need for sophisticated equipment, cellular confinement
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • many years, titania has been employed as a colorant in food, cosmetics, and sunscreen. Moreover, Ti-containing metal alloys have been widely utilized in medical fields, because the have a higher biocompatibility than other vastly explored metal oxides such as silica, manganese oxide, and iron oxide
  • nanoparticles. TiO2 acts as a DNA intercalator in the cytoplasm, causing DNA damage by generating reactive oxygen species. The explicit cytotoxicity evaluation of TiO2, as well as of the incorporated drug molecules, is a major research concern. Moreover, optimal fabrication, in-depth mechanical stability
PDF
Album
Review
Published 14 Feb 2022

Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy

  • Hiroya Tanaka,
  • Shinya Ohno,
  • Kazushi Miki and
  • Masatoshi Tanaka

Beilstein J. Nanotechnol. 2022, 13, 172–181, doi:10.3762/bjnano.13.12

Graphical Abstract
  • experimental challenge toward elucidating the dynamic processes in oxidation. For example, the formation processes of iron oxide nanoparticles have been studied in detail using state-of-the-art X-ray scattering methods [4]. As a complementary method, variable-temperature scanning tunneling microscopy (VT-STM
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022

Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles

  • Rouhollah Khodadust,
  • Ozlem Unal and
  • Havva Yagci Acar

Beilstein J. Nanotechnol. 2022, 13, 82–95, doi:10.3762/bjnano.13.6

Graphical Abstract
  • luminescent polymer. Therefore, it is usually tagged with an organic fluorophore to be optically tracked. Recently, we developed branched PEI (bPEI) superparamagnetic iron oxide nanoparticles (SPION@bPEI) with blue luminescence 1200 times stronger than that of bPEI without a traditional fluorophore, due to
  • sodium; superparamagnetic iron oxide nanoparticles; Introduction Luminescent materials are of great interest in biotechnology and medicine since they can be utilized in sensors, labelling, and imaging [1][2][3][4][5]. Luminescent proteins, luminescent synthetic polymers, and quantum dots are the most
  • theranostic nanomaterials, PAMAM and PEI were frequently coupled with superparamagnetic iron oxide nanoparticles (SPIONs) for drug/gene delivery combined with magnetic resonance imaging [31][32]. Usually, these systems were conjugated with other fluorescent tags for optical detection of nanoparticles in cells
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2022

Heating ability of elongated magnetic nanoparticles

  • Elizaveta M. Gubanova,
  • Nikolai A. Usov and
  • Vladimir A. Oleinikov

Beilstein J. Nanotechnol. 2021, 12, 1404–1412, doi:10.3762/bjnano.12.104

Graphical Abstract
  • magnetic hyperthermia. Basically, iron oxide nanoparticles were studied [5][6][7][8][9][10] because of their low toxicity and high saturation magnetization, although nanoparticles of other chemical compositions, such as metallic iron nanoparticles [11][12][13], and various ferrites [14][15][16][17] were
  • optimal diameters occurs, since with an increased value of Kef, the height of the reduced energy barrier changes rapidly with a relatively small change in the particle volume. Note that earlier [30] a similar behavior of SAR was revealed for dilute randomly oriented assemblies of spherical iron oxide
  • nanoparticles with saturation magnetization Ms = 350 emu/cm3 depending on the value of the effective uniaxial magnetic anisotropy constant in the range Ku = 1 × 104–5 × 105 erg/cm3. This fact shows once again that the dependence of the SAR of a dilute assembly of magnetite nanoparticles on the aspect ratio is
PDF
Album
Full Research Paper
Published 28 Dec 2021
Other Beilstein-Institut Open Science Activities