Search results

Search for "nanocarriers" in Full Text gives 84 result(s) in Beilstein Journal of Nanotechnology.

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • drugs can be within the olfactory epithelium or the trigeminal nerve. Figure 3 was redrawn from [59] as well as [60] and created in BioRender. Akpinar, S. (2023) https://BioRender.com/h18x614. This content is not subject to CC BY 4.0. Different potential nanocarriers for N2B delivery: SLNs, polymeric
PDF
Album
Review
Published 12 Nov 2024

AI-assisted models to predict chemotherapy drugs modified with C60 fullerene derivatives

  • Jonathan-Siu-Loong Robles-Hernández,
  • Dora Iliana Medina,
  • Katerin Aguirre-Hurtado,
  • Marlene Bosquez,
  • Roberto Salcedo and
  • Alan Miralrio

Beilstein J. Nanotechnol. 2024, 15, 1170–1188, doi:10.3762/bjnano.15.95

Graphical Abstract
  • relationship (QSAR)/ quantitative structure–property relationship (QSPR) models, this study explores the application of fullerene derivatives as nanocarriers for breast cancer chemotherapy drugs. Isolated drugs and two drug–fullerene complexes (i.e., drug–pristine C60 fullerene and drug–carboxyfullerene C60
  • to compare results obtained by DFTB3 with a conventional density functional theory approach. These findings promise to enhance breast cancer chemotherapy by leveraging fullerene-based drug nanocarriers. Keywords: breast cancer; CXCR7; drug nanocarriers; QSAR; Introduction Breast cancer is the most
  • models to drugs modified with potential nanocarriers. First, a dataset with 28 drugs, extracted from public datasets or modified from the data annotated in the previous case, was built with the corresponding quantitative descriptors to study complexes of the drugs with fullerene C60 or a simple C60–COOH
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis

  • Damai Ria Setyawati,
  • Fransiska Christydira Sekaringtyas,
  • Riyona Desvy Pratiwi,
  • A’liyatur Rosyidah,
  • Rohimmahtunnissa Azhar,
  • Nunik Gustini,
  • Gita Syahputra,
  • Idah Rosidah,
  • Etik Mardliyati,
  • Tarwadi and
  • Sjaikhurrizal El Muttaqien

Beilstein J. Nanotechnol. 2024, 15, 1105–1116, doi:10.3762/bjnano.15.89

Graphical Abstract
  • fibrosis. We first emphasize the challenges of conventional drugs for penetrating the biological barriers of the liver. After that, we highlight design principles of nanocarriers for achieving improved drug delivery of antifibrosis drugs through passive and active targeting strategies. Keywords: active
  • targeting; hepatic fibrosis; nanocarriers; nanomedicine; passive targeting; Introduction Over the last three decades, we have witnessed tremendous progress in the field of nanomedicine through the preparation of a vast number of nanoscale (bio)materials. Nanomedicine itself is defined as the biomedical
  • treatment. The enhanced permeability and retention (EPR) effect, first described by Maeda and co-workers in 1986, allows for high accumulation of the drug nanocarriers via the leaky vasculature and the deficient lymphatic system around solid tumors, as illustrated in the right panel of Figure 1 [3][4][5
PDF
Album
Review
Published 23 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
PDF
Album
Review
Published 22 Aug 2024

When nanomedicines meet tropical diseases

  • Eder Lilia Romero,
  • Katrien Van Bocxlaer and
  • Fabio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 830–832, doi:10.3762/bjnano.15.69

Graphical Abstract
  • approach against leishmaniasis [4]. Dourado and collaborators, who showed the therapeutic potential of curcumin-loaded nanocarriers, have also focused their review on these vector-borne NTDs [5]. With an emphasis on the treatment of schistosomiasis using nanoparticles, Carvalho and colleagues provided a
PDF
Editorial
Published 08 Jul 2024

Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems

  • Hsuan-Ang Tsai,
  • Tsai-Miao Shih,
  • Theodore Tsai,
  • Jhe-Wei Hu,
  • Yi-An Lai,
  • Jui-Fu Hsiao and
  • Guochuan Emil Tsai

Beilstein J. Nanotechnol. 2024, 15, 465–474, doi:10.3762/bjnano.15.42

Graphical Abstract
  • other hand, only a few research articles reported DCS formulations for parenteral administration [18][19]. Nanocarriers offer great advantages to many technological fields. For example, polytetrafluoroethylene (PTFE) with silicon carbide nanocrystals can be applied as a photostabilizer or as a UV light
PDF
Album
Full Research Paper
Published 25 Apr 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • nanocarriers have various therapeutic advantages such as no or minimized side effects, long storage life, enhanced residence time, extended circulation time, increased half-life, and decreased dose [128][129][130][131]. Nanodelivery systems for natural antioxidants can be divided into two main classes, namely
  • natural and synthetic nanocarriers. Because of the advantages of synthetic nanocarriers regarding easier customization of size, surface properties, charge, and morphology, we will focus on synthetic nanocarriers. Various types of synthetic nanocarriers have been developed to deliver natural antioxidants
  • better anti-aging properties than natural curcumin. By encapsulating curcumin in nanocarriers or by conjugating it to metal oxide nanoparticles, the solubility and bioavailability of curcumin have been substantially improved, leading to a rise in its pharmacological efficiency [136][137][138][139
PDF
Album
Review
Published 12 Apr 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • ). Our results show that Cym-NE has a k value of 10.4, while Myr-NE has a k value of 3.3. A higher k value indicates faster drug release, while a lower k value indicates slower transport kinetics and, consequently, poor drug release from nanocarriers [43]. Furthermore, both Cym-NE and Myr-NE demonstrated
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review

  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Éverton do Nascimento Alencar,
  • Edijane Matos Sales and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 37–50, doi:10.3762/bjnano.15.4

Graphical Abstract
  • solving biopharmaceutical challenges associated with drugs, such as curcumin. From a drug delivery standpoint, nanocarriers (1–1000 nm) can improve stability, increase solubility, promote intracellular delivery, and increase biological activity. Thus, this review offers a deep look into curcumin-loaded
  • nanocarriers intended for the treatment of leishmaniasis. Keywords: antiparasitic; Curcuma longa; curcuminoids; leishmaniasis; nanocarriers; neglected tropical diseases; Introduction Neglected tropical diseases (NTDs) comprise a group of 20 diseases that are caused, in most cases, by viruses, fungi, bacteria
  • , the intracellular uptake of bioactive molecules is especially hindered for hydrophobic molecules [64], making it difficult for the drug to reach the parasite. On the other hand, nanocarriers can target the interior of macrophages residing in the spleen, liver, and bone marrow, effectively delivering
PDF
Album
Review
Published 04 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • nanocarriers to enhance drug delivery by ensuring that drugs are delivered in appropriate amounts to specific target areas and remains in the body for the necessary duration [12]. As a result, nanoparticles have been utilized mainly as drug delivery systems in various parasitic diseases, including
  • advantages of using this type of nanoparticles as nanocarriers are their potential use for drug controlled release, the ability to protect drugs and other molecules with biological activity against the environment, improvement of their bioavailability and therapeutic index [17]. These nanocarriers are
  • lipid nanoparticles (SLN) are solid lipid matrices at room and body temperature [35]. Their advantages are similar to classic nanocarriers, such as protection of labile drugs from biodegradation process, excellent excipient tolerability, and prolonged release. In addition, some disadvantages of the
PDF
Album
Supp Info
Review
Published 03 Jan 2024

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • nanoplastics can penetrate and accumulate in bacterial cells [22], thus suggesting that other ONPs may have a similar fate in bacteria. In general, the mechanisms of action of ONPs used as drug nanocarriers in antibacterial applications are expected to vary with the nanoparticle type (e.g., liposomes or PLGA
  • , but the penetration of liposomes into the cell was not proved [25]. In general, organic nanocarriers are often reported to penetrate mammalian cells infected by bacteria, improving the drug accumulation in these eukaryotic cells and increasing the antibacterial efficiency of the drug [3][4][9][26
  • ]. However, the nanocarriers were not found in the bacterial cells, and the question was rarely mentioned at all. Thus, whether the increase in effectiveness of antibiotics carried by NPs is the result of the penetration of the complete nanocarrier–drug system into bacteria or rather an effect of the
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • bioavailability by modifying the absorption, distribution, and elimination of the drug. In this study, BNZ was successfully loaded into nanocarriers composed of myristyl myristate/Crodamol oil/poloxamer 188 prepared by ultrasonication. A stable NLC formulation was obtained, with ≈80% encapsulation efficiency (%EE
  • nanoparticles could accumulate in the site of inflammation delivering the drug in the surroundings of their molecular target. In addition, nanocarriers may pass through the cell membrane via endocytosis to avoid BNZ efflux via the P-glycoprotein efflux pump [14][15][16], thus delivering the drug more
  • nanoparticle formulations, it is of interest to study the potential toxicity of pharmaceutical nanocarriers in blood cells. Most of the published papers evaluated the hemolytic activity (HA) of nanoparticles after 2, 3, or 5 h of incubation [43][44][45]. The standard methods to test hemolytic activity of
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
PDF
Album
Review
Published 01 Jun 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • , nanocarriers need to be engineered to add functionalities, both in their cores and at their surfaces. This includes therapeutic drugs and genes, targeting moieties, performance enhancers (e.g., for barrier penetration and to avoid opsonization), and imaging agents [2][3]. Core and matrix of the nanoparticles
PDF
Album
Review
Published 13 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • [44]. Furthermore, the metabolism and removal from the body of NPs are not fully understood and could also pose a threat [15][45]. Despite many limitations, the medical applications of NPs create new perspectives in relation to conventionally used methods. Therefore, nanocarriers with the highest
PDF
Album
Review
Published 08 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • (NIR) radiation to ablate cells or trigger the release of related therapeutic drugs [94][96]. PTT is characterized by noninvasiveness, deep tissue penetration, and high anticancer efficiency, showing good prospects in clinical treatment [97]. Biomimetic NPs of mesoporous polydopamine nanocarriers have
  • targeting and hyperthermia [56]. In a therapeutic strategy for HCC, hepatoma cell membranes and macrophage membranes were hybridized to obtain the advantages of different cell membranes [78]. When nanocarriers with photothermal conversion ability were used to carry the anticancer drug sorafenib, efficient
  • nanocarrier was encapsulated with a cancer cell membrane, which endowed the NPs with the ability to target tumor tissues and mediate tumor killing through chemical kinetics [83]. In addition, further anticancer effects can be exerted by the ginsenoside Rh2, which was delivered by nanocarriers and inhibited
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • agents. Precision oncology research to identify targetable biomarkers and optimize tumor homing agents, hand in hand with designing multifunctional and multistage nanocarriers that respond to the inherent heterogeneity of the tumors, may resolve the challenges of inadequate tumor localization, improve
  • intracellular internalization, and bring advantages over conventional nanocarriers. Keywords: co-delivery nanoparticles; combinatorial therapy; EGFR TKI resistance; non-small cell lung cancer (NSCLC); overcoming and preventing resistance; Introduction Among the malignant diseases, lung cancer takes the lead
  • targeting motifs, multifunctional and multistage nanomicelles and polymer nanoparticles, and nanostructured lipid nanocarriers, combined with precision oncology research to identify additional targetable biomarkers, have emerged. Some have been applied in the co-delivery of clinically relevant combinations
PDF
Album
Review
Published 22 Feb 2023

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • batch-to-batch variations [33]. Also, non-biodegradability and long-term toxicity are limitations of inorganic nanocarriers [34]. The purpose of this study was to fabricate BBR nanoparticles (BBR NPs) without using any nanocarriers, thus reducing production cost, increasing the drug concentration, and
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • permeation mechanism [6][9][10]. Nanocarriers can be used together with polymeric MNs in a synergistic therapy. The nanocarriers can immediately come into contact with the stratum corneum with the help of polymeric MNs, enhancing the transdermal drug delivery of the drugs. Furthermore, these polymeric MNs
  • can encapsulate several types of nanocarriers, making it a unique system with different activities [11]. Solid MNs are used for pre-treatment of the skin. They serve only to create micropores, increasing permeability and facilitating the administration of the drug. The drug will be inserted over the
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • they contain sufficient water content in their structure [9]. In the literature, there is only one review study of nanocarriers in which ETHs, developed with natural compounds/plant extracts, are used in the field of cosmetics. In that study, information is given about the use of ETHs developed with
PDF
Album
Full Research Paper
Published 31 May 2022

Systematic studies into uniform synthetic protein nanoparticles

  • Nahal Habibi,
  • Ava Mauser,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2022, 13, 274–283, doi:10.3762/bjnano.13.22

Graphical Abstract
  • nanoparticle platforms for drug delivery transition from novelties to foundational biomedical technologies [1][2][3], it is critical to augment the existing strategies with precisely engineered nanocarriers that are better equipped to maneuver the host of barriers that exist in clinical translation [4][5
  • –circularity (7.9), but appear to have very little in common with INS (0.1). The diameter–roundness relationship of INS/HSA SPNPs is a combination of the factors observed in HSA (3.6) and INS (3.5). Conclusion In this work, we expand the conceptual framework of SPNP nanocarriers in a systematic way, while
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2022

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • spheroid diameter and up to 74 ± 8.9% of cell death after two weeks. In addition, they also inhibited multidrug resistance (MDR) pump activity in both cell lines suggesting effectivity in MDR cancers. Among the tested MFe2O4 NPs, CFO nanocarriers were the most favorable for targeted cancer therapy due to
  • excellent magnetic, colloidal, cytotoxic, and biocompatible aspects. However, detailed mechanistic, in vivo cytotoxicity, and magnetic-field-assisted studies are required to fully exploit these nanocarriers in therapeutic applications. Keywords: anticancer drugs; doxorubicin; drug carriers; in vitro
  • side effects of conventional therapeutic agents [4]. Functionalized nanoparticles have the potential to improve the therapeutic performance of drugs by regulating pharmacokinetics and pharmacodynamics [5]. Moreover, water compatibility of nanocarriers provides better chemical stability and
PDF
Album
Full Research Paper
Published 02 Dec 2021

Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

  • Richard Liam Marchese Robinson,
  • Haralambos Sarimveis,
  • Philip Doganis,
  • Xiaodong Jia,
  • Marianna Kotzabasaki,
  • Christiana Gousiadou,
  • Stacey Lynn Harper and
  • Terry Wilkins

Beilstein J. Nanotechnol. 2021, 12, 1297–1325, doi:10.3762/bjnano.12.97

Graphical Abstract
  • ; Introduction A variety of nanomaterial (NM)-enabled products have already been marketed [1][2] and there is considerable interest in the development of novel engineered nanomaterials (ENMs) for a variety of applications. Nanomedicine, including ENM-based therapeutic agents, nanocarriers (i.e., targeted drug
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • internalization, as compared to conventional therapies, potentially increasing therapeutic efficacy and minimizing side effects [4]. Nanosystems can be referred to as nanocarriers, nanoformulations, nanosized-delivery systems, and other similar terms. They have been utilized in the design of cellular and
  • respond to various external stimuli such as light [125], magnetic fields [126], ultrasound [127] and electric fields [128], or magnetic nanocarriers that respond to changes in pH by increasing the selectivity of the release site [129]. Magnetic nanoparticles (MNP). Magnetic nanoparticles contain molecules
PDF
Album
Review
Published 15 Sep 2021
Other Beilstein-Institut Open Science Activities