Search results

Search for "surface" in Full Text gives 2372 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Multifunctional anionic nanoemulsion with linseed oil and lecithin: a preliminary approach for dry eye disease

  • Niédja Fittipaldi Vasconcelos,
  • Almerinda Agrelli,
  • Rayane Cristine Santos da Silva,
  • Carina Lucena Mendes-Marques,
  • Isabel Renata de Souza Arruda,
  • Priscilla Stela Santana de Oliveira,
  • Mércia Liane de Oliveira and
  • Giovanna Machado

Beilstein J. Nanotechnol. 2025, 16, 1711–1733, doi:10.3762/bjnano.16.120

Graphical Abstract
  • efficacy and safety for ocular administration. Keywords: eye drops; micelles; low-energy method; ophthalmic vehicle; sample dilution; stability; Introduction Dry eye disease (DED) is a multifactorial condition affecting the ocular surface, characterized by changes in tear fluid composition and/or
  • insufficient tear production [1]. This condition can cause ocular discomfort, impair visual function, and promote inflammatory processes on the ocular surface, which could result in chronic complications and vision loss [2][3]. DED affects approximately 11.6% of the global population [4], with this prevalence
  • as rapid elimination by the precorneal layer and low retention of the ocular surface [7]. As a result, topical administration remains the primary treatment method despite its drawbacks, such as low bioavailability and the need for frequent applications [8][9]. Studies show that only a tiny fraction
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2025

Beyond the bilayer: multilayered hygroscopic actuation in pine cone scales

  • Kim Ulrich,
  • Max David Mylo,
  • Tom Masselter,
  • Fabian Scheckenbach,
  • Sophia Fischerbauer,
  • Martin Nopens,
  • Silja Flenner,
  • Imke Greving,
  • Linnea Hesse and
  • Thomas Speck

Beilstein J. Nanotechnol. 2025, 16, 1695–1710, doi:10.3762/bjnano.16.119

Graphical Abstract
  • surface visibly bulged upwards. The pre-curved adaxial surface of the scale-like geometry flattens. This lateral curvature is influenced by the chosen radial expansion coefficient of the simulations, as highlighted in the comparative simulations of the geometry with graded fiber size (Figure S3
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2025

Ambient pressure XPS at MAX IV

  • Mattia Scardamaglia,
  • Ulrike Küst,
  • Alexander Klyushin,
  • Rosemary Jones,
  • Jan Knudsen,
  • Robert Temperton,
  • Andrey Shavorskiy and
  • Esko Kokkonen

Beilstein J. Nanotechnol. 2025, 16, 1677–1694, doi:10.3762/bjnano.16.118

Graphical Abstract
  • , Lund University, Box 118, SE-221 00, Lund, Sweden 10.3762/bjnano.16.118 Abstract Ambient pressure X-ray photoelectron spectroscopy (APXPS) has emerged as an important technique for investigating surface and interface chemistry under realistic conditions, overcoming the limitations of conventional XPS
  • representative studies at MAX IV, including investigations of single-atom catalysts, confined catalysis, time-resolved catalysis, atomic layer deposition, and electrochemical interfaces, showcasing the role of APXPS in advancing material and surface science. Keywords: 2D materials; atomic layer deposition
  • ; batteries; catalysis; corrosion; Review Ambient pressure XPS Electron spectroscopy has significantly contributed to the understanding of chemical and physical processes that govern the complex interactions between a solid surface and its environment. These processes play crucial roles in phenomena such as
PDF
Album
Review
Published 24 Sep 2025

Prospects of nanotechnology and natural products for cancer and immunotherapy

  • Jan Filipe Andrade Santos,
  • Marcela Bernardes Brasileiro,
  • Pamela Danielle Cavalcante Barreto,
  • Ligiane Aranha Rocha and
  • José Adão Carvalho Nascimento Júnior

Beilstein J. Nanotechnol. 2025, 16, 1644–1667, doi:10.3762/bjnano.16.116

Graphical Abstract
  • by Li et al. discussed patent CN115671277 [94]. Nanoparticles Nanoparticles are materials with at least one dimension ranging from 1 to 999 nm [95]. This technology possesses a high contact surface, a high concentration of surface-active centers, and low toxicity due to promoting a reduction in the
  • neutrophils or infiltration of CD4+ T cells to destroy tumors [145]. The process of nanosizing the CGCs in the patent involves shearing at high speed and ultrasonic cycles followed by freeze-drying. This resulted in a yield of 12.73% and a purity of 96.32%. The increased surface area due to the reduction in
  • nanoparticles Gold nanoparticles are nanometer-scale structures composed of a gold core with surface ligands, which can be structured into nanospheres, nanocages, nanorods, and nanoshells [146][147]. There are various manufacturing processes such as vacuum sputtering, biosynthesis, methods based on ultraviolet
PDF
Album
Review
Published 22 Sep 2025

Venom-loaded cationic-functionalized poly(lactic acid) nanoparticles for serum production against Tityus serrulatus scorpion

  • Philippe de Castro Mesquita,
  • Karla Samara Rocha Soares,
  • Manoela Torres-Rêgo,
  • Emanuell dos Santos-Silva,
  • Mariana Farias Alves-Silva,
  • Alianda Maira Cornélio,
  • Matheus de Freitas Fernandes-Pedrosa and
  • Arnóbio Antônio da Silva-Júnior

Beilstein J. Nanotechnol. 2025, 16, 1633–1643, doi:10.3762/bjnano.16.115

Graphical Abstract
  • barriers, their biocompatibility, and low toxicity [18]. Their manipulation at the nanoscale changes specific surface properties, possibly improving the ability to cross biological barriers targeting the affected tissues [18][19]. In this context, nanoparticle controlled release based on biodegradable
  • polymers such as poly(lactic acid) (PLA) has been investigated [13]. The nanoparticles produced using these synthetic polyesters show neutral or negative zeta potential, which limits the loading of negatively charged macromolecules such as proteins, polypeptides, or DNA [14][20]. The surface of
  • polyethylenimine (PEI), to change the surface of nanoparticles to a positive potential, improving the interaction with negatively charged biomolecules, is one strategy successfully employed for gene delivery [20][23][24]. These cationic nanoparticles have an absent or weak electrostatic interaction with negatively
PDF
Album
Full Research Paper
Published 17 Sep 2025

Nanotechnology-based approaches for the removal of microplastics from wastewater: a comprehensive review

  • Nayanathara O Sanjeev,
  • Manjunath Singanodi Vallabha and
  • Rebekah Rubidha Lisha Rabi

Beilstein J. Nanotechnol. 2025, 16, 1607–1632, doi:10.3762/bjnano.16.114

Graphical Abstract
  • , and advanced membrane materials, exhibit unique properties such as high surface area, enhanced reactivity, and tunable surface chemistry, which offer promising avenues for the selective and efficient removal of MPs from water. This paper also explores the mechanism, performance and limitations of
  • key properties of nanoparticles include high surface area, extensive functionalization, high reactivity, and size-dependent characteristics. By leveraging these properties, water treatment methods can be refined at the nanoscale to selectively target pollutants [16][17]. This comprehensive review
  • sources [18]. Figure 2 represents the different sources of MPs. The marine environment is considered as the primary sink of MPs. MPs that are generated on land are eventually transported by various modes, including surface runoff and streams, and find their way to ocean. In oceans, these particles with
PDF
Album
Review
Published 15 Sep 2025

Bioinspired polypropylene-based functionally graded materials and metamaterials modeling the mistletoe–host interface

  • Lina M. Rojas González,
  • Naeim Ghavidelnia,
  • Christoph Eberl and
  • Max D. Mylo

Beilstein J. Nanotechnol. 2025, 16, 1592–1606, doi:10.3762/bjnano.16.113

Graphical Abstract
  • selected specimens for each group. To create a random, high-contrast speckle pattern, the surface of the dog bone and metamaterial specimens was sprayed with a white primer (5200 Permanentspray Premium-Acryllack, Edding International GmbH, Thalwil, Switzerland) before applying a black speckle pattern
  • (Carbon black, Liquitex Spray Paint, Cincinnati, OH, United States). During the tensile test, the surface was captured at 25 fps using a Basler ace camera (acA2040; Basler AG, Ahrensburg, Germany) equipped with a 35 mm lens (CCTV LM35HC; Kôwa, Nagoya, Japan). The captured image stacks were imported into
  • the GOM correlate software for DIC analysis (version 2018, GOM GmbH, Braunschweig, Germany). A facet size of 20 pixels and a point distance of 14 pixels was used for surface detection, using an image in the undeformed state as reference. The principal engineering strain in the direction of deformation
PDF
Album
Full Research Paper
Published 11 Sep 2025

Photocatalytic degradation of ofloxacin in water assisted by TiO2 nanowires on carbon cloth: contributions of H2O2 addition and substrate absorbability

  • Iram Hussain,
  • Lisha Zhang,
  • Zhizhen Ye and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2025, 16, 1567–1579, doi:10.3762/bjnano.16.111

Graphical Abstract
  • Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China 10.3762/bjnano.16.111 Abstract Vertically aligned TiO2 nanowires demonstrate exceptional photoactivity owing to their high specific surface area and improved charge separation; however, their
  • and contamination of aquatic environments. Studies have reported OFL concentrations in surface waters ranging from 0.05 to 17.7 μg/L, posing a potential risk to aquatic organisms and disrupting ecosystem balance [4][5]. Therefore, OFL removal from water is an important issue in environmental science
  • on porous materials, such as carbon-based adsorbents. These innovations help to slow down electron–hole recombination, broaden light absorption, and enhance surface adsorption sites [11]. Cao et al. synthesized TiO2 nanowires on reduced graphene oxide (rGO) through a solvothermal method, which
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2025

Modeling magnetic properties of cobalt nanofilms used as a component of spin hybrid superconductor–ferromagnetic structures

  • Aleksey Fedotov,
  • Olesya Severyukhina,
  • Anastasia Salomatina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2025, 16, 1557–1566, doi:10.3762/bjnano.16.110

Graphical Abstract
  • parameters of the modeled nanoscale systems. It was found that the magnetic energy and magnetization norm of the system change in a nonlinear manner with increasing number of crystalline layers of the nanofilm. The peaks found on the graph of the magnetization rate change can be caused by surface effects in
  • energy are in the range of −4.56 to −4.53 eV. Such behavior of the magnetic energy can be related to the fact that with increasing thickness of the nanofilm, the fraction of its surface atoms decreases and the influence of various surface effects decreases. As the number of crystalline layers of the
  • oscillations of the magnetization vector components occur, but they do not significantly affect the final modulus value. The presence of the obtained peaks of the magnetization vector components distribution in Figure 6 may be due to surface effects in thin films and the formation of domain walls. Depending on
PDF
Album
Full Research Paper
Published 08 Sep 2025

Transient electronics for sustainability: Emerging technologies and future directions

  • Jae-Young Bae,
  • Myung-Kyun Choi and
  • Seung-Kyun Kang

Beilstein J. Nanotechnol. 2025, 16, 1545–1556, doi:10.3762/bjnano.16.109

Graphical Abstract
  • protective PI layer is extremely thin, it can be selectively removed by reactive ion etching, ultimately leaving only the biodegradable materials on the target surface. To simplify multistep fabrication processes, wafer-scale transfer methods have also been developed [74]. These involve fabricating
  • electrical performance. Such variations may cause device malfunction or alter sensor baselines, thereby compromising accuracy. A widely adopted strategy to address this issue involves coating the outer surface of the device with bioresorbable materials that provide electrical insulation while acting as
PDF
Album
Perspective
Published 04 Sep 2025

Influence of laser beam profile on morphology and optical properties of silicon nanoparticles formed by laser ablation in liquid

  • Natalie Tarasenka,
  • Vladislav Kornev,
  • Alena Nevar and
  • Nikolai Tarasenko

Beilstein J. Nanotechnol. 2025, 16, 1533–1544, doi:10.3762/bjnano.16.108

Graphical Abstract
  • annular profile formed using a combination of an axicon and a converging lens, and a Gaussian beam focused on the surface of a Si target using the same converging lens. In all the schemes, a nanosecond Nd3+:YAG laser with a pulse duration of 10 ns operating at its fundamental harmonic (1064 nm) was used
  • surface [27] with different plasma parameters than in the plasma generated by a Gaussian beam. A change of the incident beam pattern will change the temperature and pressure inside cavitation bubbles (CBs) and influence CB oscillations. Furthermore, pressure variations at the target interface would be
  • of the synthesized products towards energy- and catalysis-related applications due to materials’ high surface area and prompt reaction kinetics. The potential benefits of the beam shape variation have recently initiated more active research on the ablative generation of NPs using spatially shaped
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2025

Dendrimer-modified carbon nanotubes for the removal and recovery of heavy metal ions from water

  • Thao Quynh Ngan Tran,
  • Huu Trung Nguyen,
  • Subodh Kumar and
  • Xuan Thang Cao

Beilstein J. Nanotechnol. 2025, 16, 1522–1532, doi:10.3762/bjnano.16.107

Graphical Abstract
  • (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels–Alder reaction in presence of a deep eutectic solvent under ultrasonication. Subsequently, dendrimers of varying length were grown by the repeated reaction of ethylene diamine and MA. Raman
  • spectroscopy was specifically used to confirm the Diels–Alder reaction on the surface of CNTs, and other characterization techniques (SEM, EDX, XRD, TGA, and FTIR) were applied to confirm the successive growth of the dendrimers. Highly dendrimerized CNTs were found to be more effective in removing heavy metal
  • application in numerous fields [18][19][20][21][22][23]. CNTs are particularly attractive as support materials due to their high specific surface area, mechanical strength, and excellent electrical and thermal conductivity [24][25][26][27]. CNTs themselves have been utilized as adsorbents for removing heavy
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2025

Cross-reactivities in conjugation reactions involving iron oxide nanoparticles

  • Shoronia N. Cross,
  • Katalin V. Korpany,
  • Hanine Zakaria and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2025, 16, 1504–1521, doi:10.3762/bjnano.16.106

Graphical Abstract
  • functional biomedical nanomaterials. However, few studies report the controls performed to determine if the loading of molecules onto IONPs is due to the proposed coupling reaction(s) employed, or some other unknown interaction with the IONP surface. Herein, we use 3,4-dihydroxybenzoic acid-functionalized
  • . Through the judicious use of controls, we demonstrate significant cross-reactivities of amines, thiols, maleimides, and common disulfide reducing agents with surface Fe of IONPs and show how these unwanted interactions can produce false positive results. Without proper controls, these can lead to
  • ]. Magnetite (Fe3O4) nanoparticles (NPs), in particular, have been explored for these applications, due to their low toxicity, biocompatibility, and high saturation magnetization [4]. These applications require reliable and controlled surface functionalization to impart desired functionality, such as tissue
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2025

Nanomaterials for biomedical applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Filippo Pierini,
  • Seda Kizilel and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 1499–1503, doi:10.3762/bjnano.16.105

Graphical Abstract
  • . Nanomaterials have gained popularity in medicine because they can be altered according to the need [1]. Researchers can tailor the shape, surface chemistry, and other specific properties of materials to deliver desirable traits. In particular, some nanoparticles can be used to deliver drugs to a tumor, reducing
  • react to certain bodily conditions, for example, changes in pH or enzymes. As a result, drugs only target affected parts of the body, lowering the damage to healthy cells. Additionally, the surface of these nanoparticles can be modified by attaching antibodies or ligands, which allows these
  • nanoparticles to target particular cell types, making them precise [10]. Dendrimers are considered a more promising group among nanocarriers. They are highly branched structures, with a given shape and many functional groups placed on their surface. This enables the safe loading of high quantities of drugs and
PDF
Editorial
Published 28 Aug 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
  • stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced
  • ; nanocolloids to thin films; photocatalysis; photovoltaics and photodetection; surface-enhanced Raman spectroscopy (SERS); Review 1 Introduction This section provides a brief introduction to the fundamental laser processing techniques used in liquids, including ablation, fragmentation, melting, irradiation; it
  • medium characteristics (e.g., chemical composition and viscosity) influence the size, morphology, and surface properties of the Au NPs, which, in turn, determine their performance. The effect of solvents on morphology of generated NPs in laser ablation is shown in Figure 2. While PLAL offers a rich
PDF
Album
Review
Published 27 Aug 2025

Photochemical synthesis of silver nanoprisms via green LED irradiation and evaluation of SERS activity

  • Tuan Anh Mai-Ngoc,
  • Nhi Kieu Vo,
  • Cong Danh Nguyen,
  • Thi Kim Xuan Nguyen and
  • Thanh Sinh Do

Beilstein J. Nanotechnol. 2025, 16, 1417–1427, doi:10.3762/bjnano.16.103

Graphical Abstract
  • candidates for surface-enhanced Raman scattering (SERS) due to their strong localized surface plasmon resonance and sharp tip geometry. In this study, AgNPrs were synthesized through a photochemical method by irradiating spherical silver nanoparticle seeds with 10 W green light-emitting diodes (LEDs; 520
  • applications. Keywords: light-emitting diodes (LEDs); photochemical synthesis; silver nanoprisms; surface-enhanced Raman scattering (SERS); trisodium citrate; Introduction Anisotropic silver nanoparticles (ASNPs) have attracted increasing attention from research groups worldwide due to their potential
  • applications in optical sensing, particularly in surface-enhanced Raman scattering (SERS) [1]. Among ASNPs, silver nanoprisms (AgNPrs) are of particular interest because of their broad absorption in the visible range (400–900 nm), enabling them to display a wide spectrum of colors such as yellow, red, orange
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2025

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts

  • Tuan Minh Truong Dang,
  • Thao Thu Thi Huynh,
  • Guo-Ping Chang-Chien and
  • Ha Manh Bui

Beilstein J. Nanotechnol. 2025, 16, 1401–1416, doi:10.3762/bjnano.16.102

Graphical Abstract
  • modifiers, magnetic-derived amphoteric metals and cooperative microbes [31][32][33][34]. Traditional biochar synthesis aims to optimize specific surface area and structural stability by controlling reaction time, heating rate and reactor temperature [35]. For example, biochar produced from oilseed rape
  • straw and softwood pellets at 700 °C exhibited a carbon distribution and surface area 3.45–6.15 times greater than that obtained at 550 °C [36]. Similarly, biochar derived from straw feedstock showed an increase in specific surface area (SSA) from 37.2 to 302.8 m2·g−1 when the pyrolysis temperature
  • increased from 300 to 800 °C [37]. However, [38] reported contrasting trends in commercial corn straw biochar, where increasing thermolysis temperatures led to a significant decrease in surface area from 808.3 to 177.5 m2·g−1, while the bulk density increased from 0.059 to 0.121 g·cm−3. Similarly, biochar
PDF
Album
Supp Info
Review
Published 21 Aug 2025

Parylene-coated platinum nanowire electrodes for biomolecular sensing applications

  • Chao Liu,
  • Peker Milas,
  • Michael G. Spencer and
  • Birol Ozturk

Beilstein J. Nanotechnol. 2025, 16, 1392–1400, doi:10.3762/bjnano.16.101

Graphical Abstract
  • and components [3]. Advancements in materials science over the past two decades have driven significant progress in the development of nanoscale electrodes. Their high surface-to-volume ratio and nanoscale dimensions offer inherent advantages, including improved response time, improved sensitivity
  • , with diameters ranging from 0.4 to 100 nm and lengths extending from a few micrometers to several centimeters [7]. The functionalization of CNTs is achieved by surface modification through various methods including covalent bonding, adsorption, and detection group attachment [7][8]. Palve et al
  • , and cell oxidative stress [10]. Another important class of biosensors relies on metal nanoparticles, as metals have long served as some of the earliest and most widely utilized materials in biosensor development. Like CNTs, nanoscale metal particles benefit from their small size and high surface-to
PDF
Album
Full Research Paper
Published 20 Aug 2025

Synthesis and antibacterial properties of nanosilver-modified cellulose triacetate membranes for seawater desalination

  • Lei Wang,
  • Shizhe Li,
  • Kexin Xu,
  • Wenjun Li,
  • Ying Li and
  • Gang Liu

Beilstein J. Nanotechnol. 2025, 16, 1380–1391, doi:10.3762/bjnano.16.100

Graphical Abstract
  • pollution in cellulose triacetate (CTA) membranes during seawater desalination, silver (Ag) nanoparticles were incorporated onto the CTA surface using polydopamine (PDA). PDA, which contains phenolic and amino groups, exhibits excellent adhesiveness and provides active sites for the attachment and reduction
  • for Ag nanoparticles. Various characterizations confirm the successful introduction of Ag nanoparticles onto the surface of the PDA-modified CTA (PCTA) membrane and the preservation of CTA microstructures. Antibacterial testing demonstrates that the Ag@PCTA membrane exhibited excellent antibacterial
  • . Concurrently, the consumption of freshwater in industrial and agricultural sectors is also witnessing a significant increase [1][2]. On Earth, while oceans cover approximately 75% of the surface, freshwater constitutes merely 2.5% of the total water volume [3][4][5]. Moreover, 70% of these freshwater resources
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2025

Automated collection and categorisation of STM images and STS spectra with and without machine learning

  • Dylan Stewart Barker and
  • Adam Sweetman

Beilstein J. Nanotechnol. 2025, 16, 1367–1379, doi:10.3762/bjnano.16.99

Graphical Abstract
  • deterministic methods (DM) using a prototypical tin phthalocyanine on Au(111) system at 4.7 K. We find that both ML and DM are able to classify images and spectra with high accuracy, with only a small amount of prior surface knowledge. We highlight the practical advantage of DM not requiring large training
  • contaminants can also strongly perturb the electronic structure of the tip. Methods of optimising the probe state for ideal STS are slow and laborious, involving indentation into a metal surface and bias pulses applied to the tip, manually checking spectra and imaging after each probe shaping attempt. The
  • characteristic feature corresponding to the surface state, which appears as a step function around a specific bias value, which for the Au(111) surface appears at around −0.48 V [13][14]. One notable attempt to automate this classification using machine learning (ML) was carried out by Wang et al. [15]. This
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2025

Enhancing the therapeutical potential of metalloantibiotics using nano-based delivery systems

  • Alejandro Llamedo,
  • Marina Cano,
  • Raquel G. Soengas and
  • Francisco J. García-Alonso

Beilstein J. Nanotechnol. 2025, 16, 1350–1366, doi:10.3762/bjnano.16.98

Graphical Abstract
  • drug carriers with ligands that bind to specific receptors overexpressed on the surface of the target site [45]. There are notable differences between the surfaces of eukaryotic cells and pathogenic bacteria, which provides obvious advantages in active-targeting strategies. In Gram-positive bacteria
  • bacterial lectins could serve as effective binding sites for glycosylated polymers [49]. Targeted nanoparticles need to be designed with an optimal density of targeting moieties to effectively interact with specific cell surface receptors. Achieving this requires a clear understanding of the ratio between
  • , significantly expanding their applications [58]. The structure of liposomes can vary, with unilamellar and multilamellar vesicles being the two main forms, offering flexibility in the types of drugs they can deliver. In addition, size, surface charge, and lipid composition of these nanoparticles can be tailored
PDF
Album
Review
Published 15 Aug 2025

Ferroptosis induction by engineered liposomes for enhanced tumor therapy

  • Alireza Ghasempour,
  • Mohammad Amin Tokallou,
  • Mohammad Reza Naderi Allaf,
  • Mohsen Moradi,
  • Hamideh Dehghan,
  • Mahsa Sedighi,
  • Mohammad-Ali Shahbazi and
  • Fahimeh Lavi Arab

Beilstein J. Nanotechnol. 2025, 16, 1325–1349, doi:10.3762/bjnano.16.97

Graphical Abstract
  • ][120]. 3.2 Characterization of liposomes Characterization of liposomes is important to ensure their quality and performance as drug delivery systems. Several techniques are commonly used to analyze the properties of liposomes, including size, lamellarity, surface charge, and EE [110][121]. Dynamic
  • light scattering (DLS) is commonly used to determine liposome size and size distribution. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) can be used to image liposome morphology and determine lamellarity. Zeta potential measurements assess the surface charge of liposomes, which
  • liposomes is preserved [110]. The surface charge of liposomes, often expressed as zeta potential, is an important parameter that influences their stability and interaction with biological systems. Electrophoretic light scattering is often used to measure the zeta potential of liposomes [110][125]. Cryo-TEM
PDF
Album
Review
Published 14 Aug 2025

Wavelength-dependent correlation of LIPSS periodicity and laser penetration depth in stainless steel

  • Nitin Chaudhary,
  • Chavan Akash Naik,
  • Shilpa Mangalassery,
  • Jai Prakash Gautam and
  • Sri Ram Gopal Naraharisetty

Beilstein J. Nanotechnol. 2025, 16, 1302–1315, doi:10.3762/bjnano.16.95

Graphical Abstract
  • This research paper delves into the exploration of laser-induced periodic surface structures (LIPSS) on a 100 µm thin stainless steel (SS) sheet. Through the application of laser irradiation with wavelengths spanning from 400 to 2400 nm, we systematically generate ladder-like LIPSS across a substantial
  • our comprehension of laser–material interactions and hold potential implications for surface engineering and material science applications. Keywords: cross section of LIPSS; high spatial frequency LIPSS (HSFL); laser-induced periodic surface structures (LIPSS); low spatial frequency LIPSS (LSFL
  • ); maximum LIPSS; penetration depth; Introduction Nanostructuring on surfaces plays a pivotal role in governing surface properties, and laser-induced periodic surface structures (LIPSS) have emerged as a potent method for achieving nanoscale surface modifications. Over the past decade, LIPSS and laser
PDF
Album
Full Research Paper
Published 11 Aug 2025

Enhancing the photoelectrochemical performance of BiOI-derived BiVO4 films by controlled-intensity current electrodeposition

  • Huu Phuc Dang,
  • Khanh Quang Nguyen,
  • Nguyen Thi Mai Tho and
  • Tran Le

Beilstein J. Nanotechnol. 2025, 16, 1289–1301, doi:10.3762/bjnano.16.94

Graphical Abstract
  • optimize the crystallinity, surface morphology, and electronic properties of the films. Subsequently, an electrochemical deposition method was developed to facilitate the uniform distribution of V2O5 among Bi–O–I flakes to homogeneously enhance the conversion reaction. The XRD pattern confirms the
  • monoclinic scheelite BiVO4 structure with dominant (121) and (004) peaks. FESEM imaging revealed that the different deposition conditions influenced the surface morphologies of the BiOI and BiVO4 films. Photocurrent density measurements showed that BiVO4(326) achieved 1.2 mA·cm−2 at 1.23 V vs RHE
  • , representing a significant enhancement compared to the other samples. The surface hole injection efficiency was measured to be 47%, whereas the incident photon-to-current efficiency reached a peak of 18.1% at 420 nm. The applied bias photon-to-current efficiency of BiVO4(326) was also superior to that of the
PDF
Album
Full Research Paper
Published 07 Aug 2025

Acrocomia aculeata oil-loaded nanoemulsion: development, anti-inflammatory properties, and cytotoxicity evaluation

  • Verónica Bautista-Robles,
  • Hady Keita,
  • Edgar Julián Paredes Gamero,
  • Layna Tayná Brito Leite,
  • Jessica de Araújo Isaías Muller,
  • Mônica Cristina Toffoli Kadri,
  • Ariadna Lafourcade Prada and
  • Jesús Rafael Rodríguez Amado

Beilstein J. Nanotechnol. 2025, 16, 1277–1288, doi:10.3762/bjnano.16.93

Graphical Abstract
  • (O/W) or water-in-oil (W/O), which are isotropic, homogeneous, and thermodynamically unstable, with droplet sizes ranging from 20 to 200 nm [20]. They present properties such as high surface area per unit volume, robust kinetic stability, and tunable rheology [21]. It has been demonstrated that
  • counterpart [47]. The superior pharmacological response of the nanoemulsion may be attributed to the nanoscale droplet size, which increases the surface area-to-volume ratio, enhances solubility and stability, and promotes rapid absorption and cellular uptake [56]. The nanometric scale facilitates more
PDF
Album
Full Research Paper
Published 06 Aug 2025
Other Beilstein-Institut Open Science Activities