Search results

Search for "activity" in Full Text gives 783 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • (Italy) within the framework of the NFFA-Europe Transnational Access Activity.
PDF
Album
Review
Published 23 May 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • TA molecules demonstrated antioxidant activity. We assume that the granules observed in TEM micrographs (Figure 1E) are probably TA aggregates that partially retain their antioxidant properties. These findings align with previous studies where TA was reported to form aggregates through intermolecular
  • suspension could not be determined owing to uncontrolled heating of the cell during illumination of the black suspension with laser light. FLG–TA preserves the metabolic activity of PDL cells Previous findings demonstrated that TA adheres to the surface of graphene layers, with a portion of it retaining its
  • the metabolic activity of PDL cells. TA’s cytotoxicity on PDL cells was first tested. Note that in each experiment the amount of free TA acid per unit volume (Figure 3A) was compared with a concentration of the FLG–TA composite incorporating the same amount of TA (Figure 3B) remembering that almost
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

A formulation containing Cymbopogon flexuosus essential oil: improvement of biochemical parameters and oxidative stress in diabetic rats

  • Ailton Santos Sena-Júnior,
  • Cleverton Nascimento Santana Andrade,
  • Pedro Henrique Macedo Moura,
  • Jocsã Hémany Cândido dos Santos,
  • Cauãn Torres Trancoso,
  • Eloia Emanuelly Dias Silva,
  • Deise Maria Rego Rodrigues Silva,
  • Ênio Pereira Telles,
  • Luiz André Santos Silva,
  • Isabella Lima Dantas Teles,
  • Sara Fernanda Mota de Almeida,
  • Daniel Alves de Souza,
  • Jileno Ferreira Santos,
  • Felipe José Aidar Martins,
  • Ana Mara de Oliveira e Silva,
  • Sandra Lauton-Santos,
  • Guilherme Rodolfo Souza de Araujo,
  • Cristiane Bani Correa,
  • Rogéria De Souza Nunes,
  • Lysandro Pinto Borges and
  • Ana Amélia Moreira Lira

Beilstein J. Nanotechnol. 2025, 16, 617–636, doi:10.3762/bjnano.16.48

Graphical Abstract
  • bactericidal, antiviral, antifungal, antioxidant, and hypoglycemic effects. Therefore, this study aims to obtain a microemulsified formulation containing the essential oil of Cymbopogon flexuosus (EOCF) and to evaluate its antioxidant and antidiabetic activity in diabetic rats. The microemulsion (ME) was
  • obtained after consulting the corresponding pseudoternary phase diagram and showed stability, isotropy, Newtonian behavior, nanometric size (15.2 nm), and pH 4.2. Both EOCF and the ME showed high antioxidant activity, but the ME resulted in greater antioxidant activity, potentiating the activity of
  • activity and showing promising results for use in the treatment of DM via the oral route. Keywords: diabetes mellitus; essential oil; lemongrass; microemulsion; Introduction Diabetes mellitus (DM) is one of the main public health problems. It affects around 463 million people worldwide, and it could
PDF
Album
Supp Info
Full Research Paper
Published 07 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • functional similarities as both serve as supportive framework. Electrospun membranes are specifically designed to replicate the fibrous architecture and functional properties of the ECM, thereby promoting cellular activity and facilitating tissue regeneration in the same way the natural matrix does within
  • applications without affecting the structure or bioactivity. The effective encapsulation of STZ was confirmed by FTIR, and the nanofibers showed high cytocompatibility in cell viability tests. STZ was released from nanofibers over 6 h, and its antibacterial activity was demonstrated through the formation of a
PDF
Album
Review
Published 24 Apr 2025

Feasibility analysis of carbon nanofiber synthesis and morphology control using a LPG premixed flame

  • Iftikhar Rahman Bishal,
  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Faizuan Bin Abdullah,
  • I Putu Tedy Indrayana and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2025, 16, 581–590, doi:10.3762/bjnano.16.45

Graphical Abstract
  • higher-temperature environment, which accelerates the breakdown of hydrocarbon molecules into free carbon atoms. The carbon atoms, in the absence of efficient catalytic activity, aggregate to form amorphous carbon rather than ordered structures such as CNFs as shown in Figure 7a. In contrast, at an
PDF
Album
Full Research Paper
Published 23 Apr 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
PDF
Album
Review
Published 22 Apr 2025

Zeolite materials with Ni and Co: synthesis and catalytic potential in the selective hydrogenation of citral

  • Inocente Rodríguez-Iznaga,
  • Yailen Costa Marrero,
  • Tania Farias Piñeira,
  • Céline Fontaine,
  • Lexane Paget,
  • Beatriz Concepción Rosabal,
  • Arbelio Penton Madrigal,
  • Vitalii Petranovskii and
  • Gwendoline Lafaye

Beilstein J. Nanotechnol. 2025, 16, 520–529, doi:10.3762/bjnano.16.40

Graphical Abstract
  • Ni2+ isolated cations, attributed to synergistic interactions that weakened the cation–framework binding. Catalytic activity tests showed that nickel species were primarily responsible for citronellal formation. Among all materials, the bimetallic CoNiIE catalyst, prepared by IE, was the only one to
  • the only one to show activity for the hydrogenation of citral to the unsaturated alcohols geraniol and nerol (Figure 5), albeit in small quantities. In contrast, the bimetallic CoNiZImp shows lower citral conversion, with no formation of unsaturated alcohols detected. This discrepancy between the
  • be discussed later. The catalytic activity of the CoNiZIE catalyst in the selective hydrogenation of citral to unsaturated alcohols (geraniol and nerol) can be attributed to a synergistic interaction between cobalt and nickel species. These active species are likely associated with isolated cations
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
  • activity and immune-related adverse effects, limiting their clinical application [12][13]. Antisense oligonucleotide-based therapies have garnered great attention as precision disease treatments because of their increased target specificity and resistance to nuclease degradation, as well as enhanced
  • treat of homozygous familial hypercholesterolemia, hereditary transthyretin-mediated amyloidosis, and familial chylomicronemia syndrome, respectively [34]. Additionally, some modified ODNs have been designed to possess intrinsic enzymatic activity through the incorporation of ribozymes and DNAzymes
  • intact after RNase treatment. In addition, the εPLL-modified GNPs exhibited high gene-silencing activity in HeLa-Luc cells, indicating efficient delivery of ASOs and other splice switching oligonucleotides, such as anti-microRNAs and DNAzymes, into the cells. The following year, Le Vay et al. designed a
PDF
Album
Review
Published 27 Mar 2025

Quantification of lead through rod-shaped silver-doped zinc oxide nanoparticles using an electrochemical approach

  • Ravinder Lamba,
  • Gaurav Bhanjana,
  • Neeraj Dilbaghi,
  • Vivek Gupta and
  • Sandeep Kumar

Beilstein J. Nanotechnol. 2025, 16, 422–434, doi:10.3762/bjnano.16.33

Graphical Abstract
  • , India Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh, 160012, India 10.3762/bjnano.16.33 Abstract Special features of zinc oxide nanoparticles have drawn a lot of interest due to their wide bandgap, high surface area, photocatalytic activity, antimicrobial
  • activity, and semiconductor properties. By doping ZnO nanoparticles with transition metals, we can alter their electrical, optical, and magnetic properties by introducing new electronic states into the band structure. Herein, Ag is added to ZnO nanostructures to improve their optical properties to detect
  • of oxygen on the surface by means of the formation of oxygen vacancies, leading to enhanced catalytic activity. Also, the small doping of Ag introduces more active sites on the catalyst surface, potentially improving the overall catalytic activity [12][13]. This study demonstrates an efficient and
PDF
Album
Full Research Paper
Published 26 Mar 2025

ReactorAFM/STM – dynamic reactions on surfaces at elevated temperature and atmospheric pressure

  • Tycho Roorda,
  • Hamed Achour,
  • Matthijs A. van Spronsen,
  • Marta E. Cañas-Ventura,
  • Sander B. Roobol,
  • Willem Onderwaater,
  • Mirthe Bergman,
  • Peter van der Tuijn,
  • Gertjan van Baarle,
  • Johan W. Bakker,
  • Joost W. M. Frenken and
  • Irene M. N. Groot

Beilstein J. Nanotechnol. 2025, 16, 397–406, doi:10.3762/bjnano.16.30

Graphical Abstract
  • AFM; model catalysts; nc-AFM; operando catalysis; qPlus tuning fork sensor; Introduction Operando catalysis is the field of research that monitors the structure, composition, and morphology of a catalyst while simultaneously investigating its activity, reactivity, and selectivity under industrially
PDF
Album
Full Research Paper
Published 21 Mar 2025

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • the drugs within the mucus microenvironment of the stomach and, thus, may lead to elevated local activity or absorption of the therapeutic agents from the mucosa. Results and Discussion Morphology of nanoparticles After the synthesis of alginate (Alg) and Eudragit-coated alginate (EudAlg
  • 595 nm with a microplate reader (BioTek Synergy H1). From these optical density values, percent reduction values (representing the metabolic activity) were calculated for each time point. Data is represented as percent viability, which was calculated by the formula below. The viability percentages of
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • pulses in liquids has been reported [43]. A generation of similar concave edges occurs in twinning. Twinned gold nanoparticles have been found to exhibit enhanced electrocatalytic activity in reductions because of an increased number of undercoordinated surface sites [44]. XPS data corroborate the
  • pulsed laser-grafted over conventionally prepared cathodes. Chronoamperometry data, collected at a constant applied potential of −1.3 V vs RHE, showed enhanced stability and mass activity of the pulsed laser-grafted gold nanoparticle–carbon fiber paper composite, compared to an analogous conventionally
  • evaluation of the bicarbonate mass activity because larger gold nanoparticles have been found to be inferior reduction catalysts [69], especially gold nanoparticles larger than 10 nm [70]. Hence, we err on the side of underestimating the benefits of pulsed laser grafting for gold nanoparticle–carbon fiber
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Fabrication and evaluation of BerNPs regarding the growth and development of Streptococcus mutans

  • Tuyen Huu Nguyen,
  • Hong Thanh Pham,
  • Kieu Kim Thanh Nguyen,
  • Loan Hong Ngo,
  • Anh Ngoc Tuan Mai,
  • Thu Hoang Anh Lam,
  • Ngan Thi Kim Phan,
  • Dung Tien Pham,
  • Duong Thuy Hoang,
  • Thuc Dong Nguyen and
  • Lien Thi Xuan Truong

Beilstein J. Nanotechnol. 2025, 16, 308–315, doi:10.3762/bjnano.16.23

Graphical Abstract
  • -transform infrared spectroscopy. The broth dilution method was used to determine the antimicrobial activity of the BerNPs against Streptococcus mutans (S. mutans). The impact of the BerNPs on the cell surface of S. mutans was evaluated through FE-SEM analysis, focusing on its ability to inhibit biofilm
  • plaque formation associated with caries damage. Therefore, one of the initial steps in preventing dental caries is to reduce and inhibit the activity of S. mutans in the oral cavity [8]. Tooth decay and oral infections are typically controlled with antibiotics. However, the proliferation of drug
  • -inflammatory properties [9]. With its antibacterial activity, berberine can accumulate in bacterial cells and bind to single- and double-stranded DNA, causing DNA damage. According to evaluations, berberine has a stronger antibacterial effect against gram-positive bacteria than against gram-negative bacteria
PDF
Album
Full Research Paper
Published 27 Feb 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • improved the antimicrobial activity of the nanofibers against a wide range of bacteria [190]. In tissue engineering applications, aligned fibers are particularly effective as they better mimic the inductive environment, such as that of human tendon stem/progenitor cells, compared to random fibers [191
  • unique properties such as biodegradability, biocompatibility, and antibacterial activity, which are considered effective in promoting wound healing. The presence of chemical structures like glycosaminoglycans in chitosan mimics the ECM and provides a hemostatic effect, thereby accelerating the healing
PDF
Album
Review
Published 26 Feb 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • advanced methods, including sol–gel, hydrothermal, solvothermal, precipitation and template-assisted techniques [53]. The synthesis method chosen often depends on factors such as the desired crystal structure, particle size, surface area, and photocatalytic activity required for the specific application
  • effective segregation of light-induced charge carriers allows the CB of the second semiconductor and the VB of the first semiconductor to engage in reduction and oxidation processes, thus enhancing the photocatalytic activity. Although type-II heterojunctions can restrict photogenerated charge recombination
  • applications where natural light is abundant. Although TiO2 has a high photocatalytic activity under UV light, its practical use is limited because of rapid electron–hole recombination and insufficient visible light absorption [65]. Hence, it is critical to develop effective strategies to enhance TiO2 activity
PDF
Album
Review
Published 25 Feb 2025

Preferential enrichment and extraction of laser-synthesized nanoparticles in organic phases

  • Theo Fromme,
  • Maximilian L. Spiekermann,
  • Florian Lehmann,
  • Stephan Barcikowski,
  • Thomas Seidensticker and
  • Sven Reichenberger

Beilstein J. Nanotechnol. 2025, 16, 254–263, doi:10.3762/bjnano.16.20

Graphical Abstract
  • of gold in acetone did not lead to carbon shells, whereas the formation of carbon shells during the LAL of copper in acetone has been reported [35]. This observation was discussed to be linked to the catalytic activity of copper for C–C bond formation [53][54]. Accordingly, a stronger carbon
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • photodynamic therapy can be obtained [1][2][3][4][5]. It has been shown that CNs have an anti-amyloid aggregation activity, and some of them (i.e., carbon nanotubes (CNTs) and graphene) are able to interface with neurons and neuronal circuits and play an important role in the modulation of neurobiological
  • processes, including neuroregeneration, neuronal differentiation, and stimulation of neuronal electrical signalization and brain activity. Thus, they are promising materials for new products regarding tissue engineering and prosthetic neuronal devices [6][7][8]. There is also an evidence that CNs manifest
  • enable transport and delivery to brain tumors. Inorganic nanostructures as TMZ carriers have shown several advantages compared to organic ones with respect to physicochemical stability and potency/cytotoxic activity, overcoming their main disadvantages, that is, hydrophobicity/fluidity and toxicity by
PDF
Album
Full Research Paper
Published 19 Feb 2025

Synthesis and the impact of hydroxyapatite nanoparticles on the viability and activity of rhizobacteria

  • Bedah Rupaedah,
  • Indrika Novella,
  • Atiek Rostika Noviyanti,
  • Diana Rakhmawaty Eddy,
  • Anna Safarrida,
  • Abdul Hapid,
  • Zhafira Amila Haqqa,
  • Suryana Suryana,
  • Irwan Kurnia and
  • Fathiyah Inayatirrahmi

Beilstein J. Nanotechnol. 2025, 16, 216–228, doi:10.3762/bjnano.16.17

Graphical Abstract
  • as Fe, Al, and Ca. Thus, soluble phosphate forms that plants can absorb are formed. The organic acids generated by rhizobacteria facilitate the formation of phosphate complexes, producing H2PO4− and the subsequent appearance of clear zones within the medium [35][36]. Nitrogen-fixing activity of
  • rhizobacteria-nHA The nitrogen-fixing activity of rhizobacteria after loading onto the nHA carrier was evaluated qualitatively by monitoring the color transition in nitrogen-free bromothymol (NFB) medium from yellow to blue. The results presented in Table 6 and Figure 7 indicate that all rhizobacteria loaded
  • rhizobacteria, Pd and Tb rhizobacteria, decreased. nHA utilized as a carrier for rhizobacteria demonstrated good compatibility, as the loaded rhizobacteria retained their phosphate-solubilization activity, evident from the appearance of clear zones. Additionally, the nitrogen-fixing activity was maintained as
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • boundaries of thermal therapy, achieving unparalleled therapeutic effects through their diverse composite structures and demonstrating enormous potential in promoting retinal drug delivery and photoacoustic imaging. This paper provides a comprehensive summary of the structure–activity relationship between
  • nanomaterials for treating various ophthalmic diseases, including ocular tumors, glaucoma, cataracts, vitreous opacity, endophthalmitis, and decreased visual acuity. It also summarizes the structure–activity relationships between the photothermal properties of these materials and novel therapeutic mechanisms
  • synthesis of AuNPs and served as a surface coating for AuNPs, promoting the coupling of DOX, enhancing anti-tumor activity, and improving the biocompatibility of AuNPs. The significant extinction coefficient of these nanoparticles enhances the contrast in photoacoustic imaging within the tumor region
PDF
Album
Review
Published 17 Feb 2025

Clays enhanced with niobium: potential in wastewater treatment and reuse as pigment with antibacterial activity

  • Silvia Jaerger,
  • Patricia Appelt,
  • Mario Antônio Alves da Cunha,
  • Fabián Ccahuana Ayma,
  • Ricardo Schneider,
  • Carla Bittencourt and
  • Fauze Jacó Anaissi

Beilstein J. Nanotechnol. 2025, 16, 141–154, doi:10.3762/bjnano.16.13

Graphical Abstract
  • cereus (ATCC 10876) and Proteus mirabilis (ATCC 35649). The analysis revealed remarkable antibacterial activity against Proteus mirabilis, suggesting a preferential selectivity for Gram-negative bacteria. Keywords: adsorption; bentonite; hybrid pigment; niobium; photocatalysis; water remediation
  • characterized through colorimetric analysis (CIEL*a*b*) and UV–vis spectroscopy. Antimicrobial activity test The antimicrobial properties of the BEPh, BEOx, A-BEPh, A-BEOx, A-BEPhP, and A-BEOxP samples were investigated against the bacteria Bacillus cereus (ATCC 10876) (Gram-positive) and Proteus mirabilis
  • of the TTC dye (0.125% w/v - 2,3,5-triphenyltetrazolium chloride 0.125%) (NEON®) was added to all wells, and the plate was kept in an oven for an additional two hours. The antibacterial activity was determined by MIC, observing the presence/absence of viable bacteria due to the reaction of the TTC
PDF
Album
Supp Info
Full Research Paper
Published 10 Feb 2025

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
  • characteristics [13][14]. This dynamic and complex spectrum of macrophage activity features nuanced challenges and opportunities in leveraging macrophage responses to enhance the therapeutic potential of NCs. Recent research has highlighted the dual role of macrophages in the context of nanomedicine. While their
  • tissue damage and chronic inflammation. This prolonged M1 activity is a hallmark of diseases like rheumatoid arthritis (RA) and inflammatory bowel disease (IBD). The activation of M1 macrophages is primarily mediated by the nuclear factor-κB (NF-κB), which is triggered by microbial ligands binding to
  • immunity and enhancing cancer immunotherapy outcomes. Additionally, natural compounds such as berberine and quercetin can modulate macrophage polarization by inhibiting M1 pathways or promoting M2 activity, highlighting the therapeutic potential of targeting macrophage states in inflammatory and
PDF
Album
Review
Published 31 Jan 2025

Characterization of ZnO nanoparticles synthesized using probiotic Lactiplantibacillus plantarum GP258

  • Prashantkumar Siddappa Chakra,
  • Aishwarya Banakar,
  • Shriram Narayan Puranik,
  • Vishwas Kaveeshwar,
  • C. R. Ravikumar and
  • Devaraja Gayathri

Beilstein J. Nanotechnol. 2025, 16, 78–89, doi:10.3762/bjnano.16.8

Graphical Abstract
  • potential of −60 mV. Furthermore, the synthesized nanoparticles displayed significant antibacterial activity against selected human pathogens, with the biggest inhibition zone observed against Staphylococcus aureus (22 ± 0.57 mm) and the smallest inhibition zone observed against Salmonella enterica serovar
  • . When ingested in sufficient quantities, they provide health advantages as they colonize the gut, and their metabolites generally show antimicrobial and health promotion activity to the host [6][7][8]. The thick peptidoglycan layers with crosslinks and the complex cell wall structures of Gram-positive
  • semiconductors. Also, ZnO NPs exhibit antimicrobial activity, targeted drug delivery, catalytic activity, and antidiabetic, larvicidal, acaricidal and anticancer activity in addition to their usage in different medical devices and pharmaceuticals [11][12][13]. We report the ecologically safe production of ZnO
PDF
Album
Full Research Paper
Published 30 Jan 2025

Instance maps as an organising concept for complex experimental workflows as demonstrated for (nano)material safety research

  • Benjamin Punz,
  • Maja Brajnik,
  • Joh Dokler,
  • Jaleesia D. Amos,
  • Litty Johnson,
  • Katie Reilly,
  • Anastasios G. Papadiamantis,
  • Amaia Green Etxabe,
  • Lee Walker,
  • Diego S. T. Martinez,
  • Steffi Friedrichs,
  • Klaus M. Weltring,
  • Nazende Günday-Türeli,
  • Claus Svendsen,
  • Christine Ogilvie Hendren,
  • Mark R. Wiesner,
  • Martin Himly,
  • Iseult Lynch and
  • Thomas E. Exner

Beilstein J. Nanotechnol. 2025, 16, 57–77, doi:10.3762/bjnano.16.7

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2025

A nanocarrier containing carboxylic and histamine groups with dual action: acetylcholine hydrolysis and antidote atropine delivery

  • Elina E. Mansurova,
  • Andrey A. Maslennikov,
  • Anna P. Lyubina,
  • Alexandra D. Voloshina,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Anzhela A. Mikhailova,
  • Polina V. Mikshina,
  • Albina Y. Ziganshina and
  • Igor S. Antipin

Beilstein J. Nanotechnol. 2025, 16, 11–24, doi:10.3762/bjnano.16.2

Graphical Abstract
  • of acetylcholine lead to serious disturbances in the functioning of the nervous system, including death. The need for rapid administration of an antidote to restore esterase activity is critical, but practical implementation of this is often difficult. One promising solution may be the development of
  • CA-RA were 0.57 mM and 0.48 mM for WI38 and Chang liver, respectively. For these cell lines, p(Hist-CA) had an IC50 higher than 1.4 mg/mL (Table 2). The agglutination activity results are shown in Figure 3. Control plate wells with erythrocytes in saline exhibited a dense layer at the bottom
  • was approved by the ethical committee of the FRC Kazan Scientific Center of RAS according to Russian national ethical guidelines (protocol No. 9–2013). No organs/tissues were procured from prisoners. Hemolysis of human red blood cells The hemolytic activity of Hist-RA, CA-RA, and p(Hist-CA) were
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2025

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes

  • Ebrahim Sadaqa,
  • Satrialdi,
  • Fransiska Kurniawan and
  • Diky Mudhakir

Beilstein J. Nanotechnol. 2024, 15, 1667–1685, doi:10.3762/bjnano.15.131

Graphical Abstract
  • cell viability assay To evaluate the cytotoxicity of the liposomal formulations, we employe the resazurin-based cell viability assay, a method widely employed and deemed reliable for assessing cell metabolic activity, which serves as an indicator of cell viability. The process involves the
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024
Other Beilstein-Institut Open Science Activities