Search results

Search for "magnetic" in Full Text gives 863 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • use of masks, achieving scales down to a few nanometers with various patterns and shapes, offers significant advantages for a wide range of technological applications. These include areas that require plasmonic [1][2][3], phononic [3][4], magnetic [5][6], optoelectronic [7][8][9], and mechanical [10
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

Zeolite materials with Ni and Co: synthesis and catalytic potential in the selective hydrogenation of citral

  • Inocente Rodríguez-Iznaga,
  • Yailen Costa Marrero,
  • Tania Farias Piñeira,
  • Céline Fontaine,
  • Lexane Paget,
  • Beatriz Concepción Rosabal,
  • Arbelio Penton Madrigal,
  • Vitalii Petranovskii and
  • Gwendoline Lafaye

Beilstein J. Nanotechnol. 2025, 16, 520–529, doi:10.3762/bjnano.16.40

Graphical Abstract
  • 5 °C/min. Hydrogen uptake was monitored using the TCD. Catalytic test in citral hydrogenation In a manner analogous to [24], the hydrogenation of citral was conducted in a 250 mL autoclave equipped with a magnetic stirrer and a temperature control unit. The catalysts (400 mg) were immersed in 90 mL
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • nanopatterning and nanoscale functionalization have garnered significant interest, owing to their broad applications in DNA origami [10], tuning of wettability [11] and electrical and magnetic anisotropy [12][13], isolated dot formation [1], nanoscale plasmonic arrays [14], and field emission [15]. Thus, ion
  • a strong electric field generated in the cavity, the ECR-based ion sources equipped with microwave cavities neither contain any filament nor any type of electrode [26]. The high plasma density within a quartz cup is confined by solenoid magnets surrounding it, creating a multi-cusp magnetic field
  • . However, careful attention is required for the microwave coupling to the plasma cup to minimize the reflections of microwave power. Mechanical adjustments to the resonator length and waveguide are made to ensure minimal reflection. Additionally, maintaining the necessary magnetic field strength is crucial
PDF
Album
Full Research Paper
Published 31 Mar 2025

Quantification of lead through rod-shaped silver-doped zinc oxide nanoparticles using an electrochemical approach

  • Ravinder Lamba,
  • Gaurav Bhanjana,
  • Neeraj Dilbaghi,
  • Vivek Gupta and
  • Sandeep Kumar

Beilstein J. Nanotechnol. 2025, 16, 422–434, doi:10.3762/bjnano.16.33

Graphical Abstract
  • activity, and semiconductor properties. By doping ZnO nanoparticles with transition metals, we can alter their electrical, optical, and magnetic properties by introducing new electronic states into the band structure. Herein, Ag is added to ZnO nanostructures to improve their optical properties to detect
PDF
Album
Full Research Paper
Published 26 Mar 2025

Size control of nanoparticles synthesized by pulsed laser ablation in liquids using donut-shaped beams

  • Abdel Rahman Altakroury,
  • Oleksandr Gatsa,
  • Farbod Riahi,
  • Zongwen Fu,
  • Miroslava Flimelová,
  • Andrei Samokhvalov,
  • Stephan Barcikowski,
  • Carlos Doñate-Buendía,
  • Alexander V. Bulgakov and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 407–417, doi:10.3762/bjnano.16.31

Graphical Abstract
  • precise compositional control such as metastable binary core–shell NPs [16] and quinary Cantor high-entropy alloy NPs [17][18]. Such high-entropy nanomaterials are recently being discussed as game changers, providing disruptive design opportunities in multifunctional catalysts or magnetic materials [19
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2025

Engineered PEG–PCL nanoparticles enable sensitive and selective detection of sodium dodecyl sulfate: a qualitative and quantitative analysis

  • Soni Prajapati and
  • Ranjana Singh

Beilstein J. Nanotechnol. 2025, 16, 385–396, doi:10.3762/bjnano.16.29

Graphical Abstract
  • manipulation of particles with a size less than 100 nm. These tiny particles possess unique physicochemical features, including optical, electrical, magnetic, and catalytic properties [23]. Indeed, the advanced properties of nanoparticles enables them to be used in different areas, such as biosensing, drug
PDF
Album
Full Research Paper
Published 20 Mar 2025

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • , 40% Amp) for 5 min, followed by 30 min of incubation on a magnetic stirrer. Finally, isopropanol (4 mL) was added to the emulsion, and the nanoparticles were collected by centrifugation (3000g for 5 min). The pellet was washed once with isopropanol and three times with double-distilled water (ddH2O
  • mL) were dripped into Eudragit RS 100 suspension (2%, v/v, of Eudragit RS 30D, diluted with ddH2O) by using a syringe pump at a rate of 5 mL/h, and the dispersion was incubated on a magnetic stirrer (700 rpm, 10 min, room temperature). At the end of the incubation, coated NPs were centrifuged (10000g
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Vortex lattices of layered HTSCs at different vortex–vortex interaction potentials

  • Valerii P. Lenkov,
  • Anastasia N. Maksimova,
  • Anna N. Moroz and
  • Vladimir A. Kashurnikov

Beilstein J. Nanotechnol. 2025, 16, 362–370, doi:10.3762/bjnano.16.27

Graphical Abstract
  • ; Introduction Type-II superconductors, as shown by numerous studies, have a complex phase diagram in a magnetic field. In fields greater than the first critical field Hc1 and less than the second critical field Hc2, at temperatures below the critical temperature the superconductor is in a mixed state, in which
  • the magnetic field penetrates the superconductor in the form of Abrikosov vortices [1]. In high-temperature superconductors (HTSCs), such as Y- and Bi-based cuprates, the vortex lattice is further complicated since these compounds have a layered structure [2][3][4][5][6]. The vortex filament in these
  • ordering of the pancakes, which also enhances the pinning of vortices on defects. In [8], the vortex system in a HgBa2CuO4+δ monocrystal was studied. The measurements were performed in a wide range of temperatures and magnetic fields, and the phase diagram of the vortex system was obtained as a result of
PDF
Album
Full Research Paper
Published 13 Mar 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • efficacy of TiO2 under visible or solar-simulated light, retrieving the synthesized small particles poses new challenges. Researchers have recently synthesized heterojunctions using TiO2 and magnetic particles such as α-Fe2O3 and Fe3O4 in order to solve the problem of recovering particles. They
  • /CoFe2O4 catalyst with GO, which demonstrated an 85% degradation rate for TC and a 99% degradation rate for DOX within 60 min of treatment time. The degradation efficiencies were improved through doping and further enhanced by adding GO and magnetic CoFe2O4. Numerous ternary compounds (see below in Table 5
PDF
Album
Review
Published 25 Feb 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • chemical modifications and/or coupling with hydrophilic polymers. TMZ was successfully incorporated in magnetic NPs [36], mesoporous silica NPs [37], and NPs made of silver [38], zinc oxide [39], and gold [40], all of them showing high accumulation in tumor cells and cytotoxic activity in vitro and in vivo
PDF
Album
Full Research Paper
Published 19 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • formed may not fully represent the structure of the fabricated MOF-based MMMs. While electron microscopy offers a highly detailed qualitative analysis of specific regions within the membrane, methods such as Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Clays enhanced with niobium: potential in wastewater treatment and reuse as pigment with antibacterial activity

  • Silvia Jaerger,
  • Patricia Appelt,
  • Mario Antônio Alves da Cunha,
  • Fabián Ccahuana Ayma,
  • Ricardo Schneider,
  • Carla Bittencourt and
  • Fauze Jacó Anaissi

Beilstein J. Nanotechnol. 2025, 16, 141–154, doi:10.3762/bjnano.16.13

Graphical Abstract
  • reactor at 25 °C (open), a magnetic stirrer, and a UV lamp (253.7 nm, 15 W, 220 V) within a dark chamber. After 3 h of exposure, the solutions were centrifuged at 3500 rpm for 10 min, and their final concentrations were determined using a UV–vis spectrophotometer. These samples were labeled as A-BEPhP and
PDF
Album
Supp Info
Full Research Paper
Published 10 Feb 2025

TiO2 immobilized on 2D mordenite: effect of hydrolysis conditions on structural, textural, and optical characteristics of the nanocomposites

  • Marina G. Shelyapina,
  • Rosario Isidro Yocupicio-Gaxiola,
  • Gleb A. Valkovsky and
  • Vitalii Petranovskii

Beilstein J. Nanotechnol. 2025, 16, 128–140, doi:10.3762/bjnano.16.12

Graphical Abstract
  • . Figure 2 shows the 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra of the parent compound MOR-L and the TiO2-loaded samples. They confirm the regularity of the zeolite frameworks of the as-prepared samples. The spectrum consists of only one line at 54 ppm, which corresponds to
PDF
Album
Full Research Paper
Published 10 Feb 2025

Characterization of ZnO nanoparticles synthesized using probiotic Lactiplantibacillus plantarum GP258

  • Prashantkumar Siddappa Chakra,
  • Aishwarya Banakar,
  • Shriram Narayan Puranik,
  • Vishwas Kaveeshwar,
  • C. R. Ravikumar and
  • Devaraja Gayathri

Beilstein J. Nanotechnol. 2025, 16, 78–89, doi:10.3762/bjnano.16.8

Graphical Abstract
  • -to-volume ratio, and magnetic, electrical, optical, antimicrobial and hardness properties give NPs distinct mechanical, thermal, and catalytic properties. As a result, nanotechnology has widespread applications across diverse domains and opened up new possibilities for innovation [1][2]. Particles
PDF
Album
Full Research Paper
Published 30 Jan 2025

Theoretical study of the electronic and optical properties of a composite formed by the zeolite NaA and a magnetite cluster

  • Joel Antúnez-García,
  • Roberto Núñez-González,
  • Vitalii Petranovskii,
  • H’Linh Hmok,
  • Armando Reyes-Serrato,
  • Fabian N. Murrieta-Rico,
  • Mufei Xiao and
  • Jonathan Zamora

Beilstein J. Nanotechnol. 2025, 16, 44–53, doi:10.3762/bjnano.16.5

Graphical Abstract
  • that the composite exhibits magnetic properties of a half-semiconductor and a strong optical response within the visible and ultraviolet regions of the spectrum. Keywords: magnetic cluster; NaA zeolite; optical properties; Introduction Zeolites are crystalline materials made up of aluminosilicates
  • introduction of magnetic nanoparticles into zeolite crystals so that the resulting composite can respond to an external magnetic field [33]. By imparting magnetic properties to such composites, they can be efficiently recovered after capturing contaminants such as heavy metals [34][35][36][37] and dyes [38][39
  • ][40] in bodies of water, addressing a pressing environmental concern. Also, iron-modified zeolites have shown variations in both electric and magnetic properties that allow one to generate catalysts based on zeolites [41]. Among these types of composites consisting of zeolites modified with magnetic
PDF
Album
Full Research Paper
Published 17 Jan 2025

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • neuronal mitochondria, as evidenced by fluorescence intensities identified in brain homogenates, and reduced Aβ1 deposition, demonstrating the ability of the nanocomposite to cross the BBB [71]. Inorganic nanoparticles exhibit unique optical, magnetic, and chemical properties and stability. Gold
PDF
Album
Perspective
Published 16 Dec 2024

Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility

  • Shushanik A. Kazaryan,
  • Seda A. Oganian,
  • Gayane S. Vardanyan,
  • Anatolie S. Sidorenko and
  • Ashkhen A. Hovhannisyan

Beilstein J. Nanotechnol. 2024, 15, 1593–1602, doi:10.3762/bjnano.15.125

Graphical Abstract
  • in most biological and chemical reactions involved in the production of medical materials [10][11][12][13]. Magnetic nanoparticles (MNPs), such as iron oxides, not only exhibit superparamagnetism and high magnetic susceptibility, they also possess unique physical properties, biocompatibility
  • Fe3O4 NPs have great potential for commercial use and have already found applications in biomedicine, such as magnetic resonance imaging (as contrast enhancement agents), targeted drug or gene delivery, tissue engineering, biological fluid detoxification, hyperthermia, biological sensing, nanozymes, and
PDF
Album
Full Research Paper
Published 11 Dec 2024

Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol

  • Akash Kumar,
  • Ridhima Chadha,
  • Abhishek Das,
  • Nandita Maiti and
  • Rayavarapu Raja Gopal

Beilstein J. Nanotechnol. 2024, 15, 1576–1592, doi:10.3762/bjnano.15.124

Graphical Abstract
  • grafting magnetic nanoparticles with ʟ-carnosine significantly enhanced the catalytic performance of the nanoparticles [15]. In another study, metal-organic framework nanoparticles fabricated with ʟ-carnosine were employed for arsenic removal via an adsorption mechanism. The maximum removal of arsenic was
  • 94.33 mg/g at a pH of 8.5 and 0.4 g/L adsorbent [16]. These studies confirmed that ʟ-carnosine adsorbed on metal surfaces has widespread environmental applications. However, magnetic nanoparticles or MOFs coated with ʟ-carnosine were applicable only for environmental remediation but were incapable of
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2024

Green synthesis of silver nanoparticles derived from algae and their larvicidal properties to control Aedes aegypti

  • Matheus Alves Siqueira de Assunção,
  • Douglas Dourado,
  • Daiane Rodrigues dos Santos,
  • Gabriel Bezerra Faierstein,
  • Mara Elga Medeiros Braga,
  • Severino Alves Junior,
  • Rosângela Maria Rodrigues Barbosa,
  • Herminio José Cipriano de Sousa and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 1566–1575, doi:10.3762/bjnano.15.123

Graphical Abstract
  • electrical, optical, and magnetic properties for a wide range of applications [22][23]. They can be synthesized by different procedures based on “top-down” or “bottom-up” approaches [24] (Figure 1). Top-down synthesized silver nanoparticles can be obtained by lithography, attrition, milling, and other
  • extract filtrate with 90 mL of AgNO3 (1 mM). To increase the yield of silver nanoparticles, the sample was placed under magnetic stirring varying the heating temperatures (37–80 °C). The formation of NPs was verified from the color change in the solution to reddish brown. The possible chemical compounds
  • from red algae [54]. A. rigida seaweed extract was prepared by adding pulverized seaweed (10 g) to 500 mL of purified water. The mixture was heated to a temperature of 80 °C under magnetic stirring for 20 min. Finally, the extract was filtered and centrifuged (12298g for 10 min). The NPs were obtained
PDF
Album
Review
Published 04 Dec 2024

Effect of radiation-induced vacancy saturation on the first-order phase transformation in nanoparticles: insights from a model

  • Aram Shirinyan and
  • Yuriy Bilogorodskyy

Beilstein J. Nanotechnol. 2024, 15, 1453–1472, doi:10.3762/bjnano.15.117

Graphical Abstract
PDF
Album
Full Research Paper
Published 21 Nov 2024

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • vessel was charged with PtBr2 (0.31 g, 0.88 mmol), a magnetic stir bar and dry DCE (30 mL). The glass pressure vessel was placed in a 300 mL Parr reactor for 2 h at room temperature under CO (150 psi). The temperature was then increased to 110 °C by a sand bath, and the reaction mixture was stirred for
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • interface engineering are crucial for success [25][26][27]. The primary motivation for choosing lithium niobate is to utilize materials whose optical properties are sensitive to one or more externally controllable factors, such as electric or magnetic fields, enabling the manipulation of the structure
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • therapeutic applications. For example, polymeric NPs exhibit easily tunable surface properties [117], lipid NPs offer high bioavailability and -compatibility [118], and inorganic NPs provide unique magnetic or optical properties [119]. Moreover, DDSs can be conjugated with ligands and coated with mucoadhesive
PDF
Album
Review
Published 12 Nov 2024

Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications

  • The-Long Phan,
  • Le Viet Cuong,
  • Vu Dinh Lam and
  • Ngoc Toan Dang

Beilstein J. Nanotechnol. 2024, 15, 1390–1399, doi:10.3762/bjnano.15.112

Graphical Abstract
  • microcavities [9]. Additionally, it is a transparent semiconductor with significant piezoelectricity [10]. These noble characteristics suggest ZnO to be a potential material in the fabrication of UV/blue/green LEDs, solid-state random lasers, UV-absorption devices, and nanogenerators [9][11][12][13]. Magnetic
  • ordering can also be established in ZnO lattices upon doping with transition-metal and/or rare-earth elements (known as magnetic semiconductors, DMSs). This is expected to enable the development of next-generation spintronic devices [14] applicable to quantum and neuromorphic computing for artificial
PDF
Album
Full Research Paper
Published 11 Nov 2024

Investigation of Hf/Ti bilayers for the development of transition-edge sensor microcalorimeters

  • Victoria Y. Safonova,
  • Anna V. Gordeeva,
  • Anton V. Blagodatkin,
  • Dmitry A. Pimanov,
  • Anton A. Yablokov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2024, 15, 1353–1361, doi:10.3762/bjnano.15.108

Graphical Abstract
  • based on a transition-edge sensor (TES) in experiments to determine the magnetic moment of neutrinos. Based on the measurements of the critical current, the critical temperature, and the width of the superconducting transition, we estimate the energy resolution δE of the TES prototypes, showing that it
PDF
Album
Full Research Paper
Published 06 Nov 2024
Other Beilstein-Institut Open Science Activities