Search results

Search for "nanoparticles" in Full Text gives 1262 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Efficiency of single-pulse laser fragmentation of organic nutraceutical dispersions in a circular jet flow-through reactor

  • Tina Friedenauer,
  • Maximilian Spellauge,
  • Alexander Sommereyns,
  • Verena Labenski,
  • Tuba Esatbeyoglu,
  • Christoph Rehbock,
  • Heinz P. Huber and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 711–727, doi:10.3762/bjnano.16.55

Graphical Abstract
  • yield of submicrometer particles and nanoparticles was quantified using UV–vis extinction spectroscopy, scanning electron microscopy, and analytical centrifugation, while high-performance liquid chromatography determined degradation. We found improved fragmentation efficiency at lower mass
  • ), and laser melting (LML) in liquids are aimed at synthesizing nanoparticles (NPs) from bulk targets (LAL), by downsizing (LFL), or by increasing/reshaping (LML) particle dispersions [1]. On the other hand, pulsed laser defect engineering in liquids (PUDEL) processes involve targeted post-treatment of
  • ) nanoparticles [60]. On the other hand, it has been shown that optical breakdown and the production of ROS are hampered at high nanoparticle concentrations [60], which may be responsible for the low degradation by LFL-generated radicals at high particle mass concentrations. Furthermore, it has to be considered
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • composition and the surface potential across InP nanowire p–n junctions for individual nanowire devices. InP nanowires were grown on InP(111) substrates by vapor–liquid–solid growth using nanoimprint lithography for generating catalytic Au nanoparticles in a metal–organic vapor phase epitaxy (MOVPE) reactor
PDF
Album
Review
Published 23 May 2025

Aprepitant-loaded solid lipid nanoparticles: a novel approach to enhance oral bioavailability

  • Mazhar Hussain,
  • Muhammad Farooq,
  • Muhammad Asad Saeed,
  • Muhammad Ijaz,
  • Sherjeel Adnan,
  • Zeeshan Masood,
  • Muhammad Waqas,
  • Wafa Ishaq and
  • Nabeela Ameer

Beilstein J. Nanotechnol. 2025, 16, 652–663, doi:10.3762/bjnano.16.50

Graphical Abstract
  • , Robert Stevenson Road, Edinburgh, EH9 3FB, United Kingdom 10.3762/bjnano.16.50 Abstract Objectives of the present study are the development of aprepitant (APT)-loaded solid lipid nanoparticles (SLNs) using the polymers poloxamer 407 and β-cyclodextrin for enhanced solubility and their pharmacokinetic
  • . Therefore, the optimal SLN formulation APT-CD-NP4 is a promising tool for oral administration with sustained release to improve the bioavailability of the BCS class-IV drug APT. Keywords: aprepitant; β-cyclodextrin; pharmacokinetic study; poloxamer; solid lipid nanoparticles; Introduction Cancer is a
  • class-IV drug [10]. Low solubility and poor dissolution of BCS class-IV drugs can be improved by using techniques such as incorporating the drug or prodrug into lipid or polymeric formulations, using solid lipid nanoparticles (SLNs), applying surfactants, adjusting the pH value, reducing particle size
PDF
Album
Full Research Paper
Published 15 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • biodegradable PU has been utilized to develop 3D printing materials with regulated bioactivity for cartilage tissue engineering [148]. The printing ink contains a water-based dispersion of synthetic biodegradable PU nanoparticles, hyaluronan, and bioactive substances. The ink was used at low temperatures to
  • neuronal development and embryonic stem cell culturing [161]. For biological applications, electrospun PU nanofibers including antibacterial substances such as silver nanoparticles, 4-vinylpyridine, or streptomycin sulfate were also created. These researches combined the use of wound dressings with the
  • therapeutic treatment [167]. These materials are embedded with responsive elements like nanoparticles that capture light in the near-infrared (NIR) or visible range and transform it to energy or heat to elicit specific responses. Such materials can, upon light exposure, release therapeutic payloads in the
PDF
Album
Review
Published 24 Apr 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
  • to intermediates of the oligomerization process. Evidence from in vivo studies indicate that NMs hold promise for ameliorating AD symptoms. Additionally, the review explores the different interaction mechanisms through which nanoparticles exhibit their inhibitory effects on AβOs, providing insights
  • biosensors for early diagnosis and improving the sensitivity of AβO detection. In imaging, nanoparticles (NPs) can help to visualize localized protein accumulation, complementing existing diagnostic methods. Materials such as carbon-based NMs (e.g., graphene oxide) and metal NPs (e.g., gold and silver
  • electrochemical detection of AβOs via a nanobiosensor consisting of gold nanoparticles (AuNPs) embedded in a conductive polymeric matrix. For this, the surface of the AuNPs was further modified with PrPc, which acted as the biorecognition element for the specific detection of AβOs in ex vivo real samples, viz
PDF
Album
Review
Published 22 Apr 2025

Retrieval of B1 phase from high-pressure B2 phase for CdO nanoparticles by electronic excitations in CdxZn1−xO composite thin films

  • Arkaprava Das,
  • Marcin Zając and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2025, 16, 551–560, doi:10.3762/bjnano.16.43

Graphical Abstract
  • Abstract This study investigates the recovery of the B1 phase from the high-pressure B2 phase, at atmospheric pressure, in cadmium oxide (CdO) nanoparticles incorporated within sol–gel synthesized CdxZn1−xO (x = 0.40) composite thin films. The recovery process is investigated using electronic excitations
  • as an effective tool. Exposure to 120 MeV silver ion irradiation results in the complete amorphization of the B2 phase in CdO nanoparticles, while the crystalline hexagonal wurtzite phase of zinc oxide (ZnO) remains intact. In contrast, 80 MeV oxygen ion irradiation preserves the B2 phase and
  • facilitates the reemergence of the B1 phase. The partial damage caused by electronic energy loss during oxygen ion irradiation in the willemite Zn2SiO4 phase is identified as a trigger for the B1 to B2 phase transformation in CdO nanoparticles, enabling the recovery of the B1 phase. The diminishing local
PDF
Album
Full Research Paper
Published 17 Apr 2025

Functionalized gold nanoflowers on carbon screen-printed electrodes: an electrochemical platform for biosensing hemagglutinin protein of influenza A H1N1 virus

  • Carlos Enrique Torres-Méndez,
  • Sharmilee Nandi,
  • Klara Martinovic,
  • Patrizia Kühne,
  • Yifan Liu,
  • Sam Taylor,
  • Maria Lysandrou,
  • Maria Ines Berrojo Romeyro Mascarenhas,
  • Viktoria Langwallner,
  • Javier Enrique Sebastián Alonso,
  • Ivana Jovanovic,
  • Maike Lüftner,
  • Georgia-Vasiliki Gkountana,
  • David Bern,
  • Abdul-Raouf Atif,
  • Ehsan Manouchehri Doulabi,
  • Gemma Mestres and
  • Masood Kamali-Moghaddam

Beilstein J. Nanotechnol. 2025, 16, 540–550, doi:10.3762/bjnano.16.42

Graphical Abstract
  • transducer system of our biosensor is based on low-cost carbon screen printed electrodes (CSPEs) modified with functionalized gold nanoflowers (AuNFs). The complex morphology and surface functionalization of the nanoparticles with 4-aminothiophenol (4-ATP) significantly increased the surface area and the
  • protein at clinically relevant concentrations. Scanning electron microscopy Scanning electron microscopy (SEM) analysis was explored to characterize the surface of the electrodes after electrodeposition of gold nanoparticles (Figure 2). Because of the high conductivity of gold, a difference in contrast is
  • observed when comparing the surface of the commercial CSPE (Figure 2A) to that of the AuNFs/CSPE (Figure 2B). The gold nanoparticles are evenly distributed across the surface of the electrode (Figure 2C). The deposited nanoparticles show a flower-like morphology with an average size of 139 nm and a
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2025

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • applications [32][33][34], palladium is an important metal as it is the optimal material to make metallic contacts with CNTs [35]. Palladium nanoparticles are also being explored for biomedical applications and sensors [36]. Therefore, Pd nanoprinting via FEBID could emerge as a key technique for creating
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • production of Mo nanoparticles and the subsequent increase in surface plasmon resonance or interband transitions. As-deposited molybdenum thin films deposited at room temperature typically exhibit a smooth surface and crystalline structure. The absorbance of molybdenum thin films increases with increasing
  • film thickness and peaks between 300 and 700 nm, corresponding to the localized surface plasmon resonance (LSPR) of molybdenum nanoparticles [45][46]. The formation of defects through ion irradiation increased the scattering of light and absorption within the film, resulting in enhanced overall
  • absorbance of Mo thin films. The blue shift of the LSPR band to a shorter wavelength (i.e., 260–340 nm) after nitrogen ion implantation can be attributed to modifications in the size, shape, and density of molybdenum nanoparticles [47]. The absorbance bands are more pronounced after nitrogen implantation
PDF
Album
Full Research Paper
Published 01 Apr 2025

Effect of additives on the synthesis efficiency of nanoparticles by laser-induced reduction

  • Rikuto Kuroda,
  • Takahiro Nakamura,
  • Hideki Ina and
  • Shuhei Shibata

Beilstein J. Nanotechnol. 2025, 16, 464–472, doi:10.3762/bjnano.16.35

Graphical Abstract
  • Rikuto Kuroda Takahiro Nakamura Hideki Ina Shuhei Shibata illuminus Inc., 307 Wako Riken Incubation Plaza, 2–3–13, Minami, Wako, Saitama, 351–0104, Japan 10.3762/bjnano.16.35 Abstract Laser-induced reduction in liquid (LRL) is a physicochemical technique for synthesizing nanoparticles by
  • irradiating a solution containing metal ions with a high-intensity laser. It is simple and environmentally friendly, as it does not require reducing agents or high-temperature, high-pressure environments. In this method, nanoparticles are synthesized by reducing metal ions with short-lived radical species
  • produced by the breakdown of solvent molecules in a high-intensity reaction field near the focus of the laser. This unique reaction has the characteristic of being able to synthesize non-equilibrium solid–solution alloy nanoparticles. On the other hand, it is necessary to improve the synthesis efficiency
PDF
Album
Full Research Paper
Published 27 Mar 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
  • optimise ASO-based therapeutics for more precise and effective disease treatments. Keywords: antisense oligonucleotides; enhanced delivery; gene transfection; intracellular uptake; locked nucleic acid (LNA); nanoparticles; peptide nucleic acid (PNA); personalised therapy; phosphorodiamidate morpholino
  • ) (εPLL) (≈4.2 kDa) as a cationic polymer to enhance the delivery of single-strand phosphorothioate backbone ASOs (ASO-GAPDH, ASO-PHD2, and ASO-Luci) through the formation of green nanoparticles (GNPs) with natural polyphenols such as epigallocatechin gallate [65]. The authors demonstrated that εPLL
  • played a crucial role in the successful coating of these nanoparticles, significantly increasing their zeta potential and improving cellular uptake. Moreover, εPLL-coated GNPs were found to provide robust protection for the ASOs against nuclease degradation, maintaining over 78% of the oligonucleotides
PDF
Album
Review
Published 27 Mar 2025

Quantification of lead through rod-shaped silver-doped zinc oxide nanoparticles using an electrochemical approach

  • Ravinder Lamba,
  • Gaurav Bhanjana,
  • Neeraj Dilbaghi,
  • Vivek Gupta and
  • Sandeep Kumar

Beilstein J. Nanotechnol. 2025, 16, 422–434, doi:10.3762/bjnano.16.33

Graphical Abstract
  • , India Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh, 160012, India 10.3762/bjnano.16.33 Abstract Special features of zinc oxide nanoparticles have drawn a lot of interest due to their wide bandgap, high surface area, photocatalytic activity, antimicrobial
  • activity, and semiconductor properties. By doping ZnO nanoparticles with transition metals, we can alter their electrical, optical, and magnetic properties by introducing new electronic states into the band structure. Herein, Ag is added to ZnO nanostructures to improve their optical properties to detect
  • sensitivity toward lead. The lead chemical sensor that was developed had a detection limit of 3 ppm with a sensitivity of 16 µA·ppm−1·cm−2. The recorded reaction time of lead sensor was less than two seconds. Keywords: electrochemical methods; chemical sensor; doping; lead; nanoparticles; ZnO nanorods
PDF
Album
Full Research Paper
Published 26 Mar 2025

Size control of nanoparticles synthesized by pulsed laser ablation in liquids using donut-shaped beams

  • Abdel Rahman Altakroury,
  • Oleksandr Gatsa,
  • Farbod Riahi,
  • Zongwen Fu,
  • Miroslava Flimelová,
  • Andrei Samokhvalov,
  • Stephan Barcikowski,
  • Carlos Doñate-Buendía,
  • Alexander V. Bulgakov and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 407–417, doi:10.3762/bjnano.16.31

Graphical Abstract
  • GROC·UJI, Institute of New Imaging Technologies, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n, 12071 Castellón, Spain 10.3762/bjnano.16.31 Abstract The potential to modify the size distribution of nanoparticles synthesized by pulsed laser ablation in liquids is demonstrated using a donut-shaped
  • this pioneering study, further investigation with higher temporal and spatial resolution are warranted. Keywords: beam shaping; cavitation bubble; donut beam; gold nanoparticles; high-entropy alloy nanoparticles; nanoparticle size analysis; yttrium oxide nanoparticles; Introduction The demand for
  • nanoparticles (NPs) with defined particle sizes and narrow size distribution width is driven by the growing integration of nanomaterials into various industrial applications, such as medicine [1][2][3], catalysis [4][5], sensors [6][7], and additive manufacturing [8]. The performance of NPs typically depends on
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2025

ReactorAFM/STM – dynamic reactions on surfaces at elevated temperature and atmospheric pressure

  • Tycho Roorda,
  • Hamed Achour,
  • Matthijs A. van Spronsen,
  • Marta E. Cañas-Ventura,
  • Sander B. Roobol,
  • Willem Onderwaater,
  • Mirthe Bergman,
  • Peter van der Tuijn,
  • Gertjan van Baarle,
  • Johan W. Bakker,
  • Joost W. M. Frenken and
  • Irene M. N. Groot

Beilstein J. Nanotechnol. 2025, 16, 397–406, doi:10.3762/bjnano.16.30

Graphical Abstract
  • show operando combined AFM/STM images of a clean Pd(100) single crystal that undergoes oxidation of the surface. The oxidation happens at 450 K under 0.5 bar of oxygen atmosphere. The second experiment is a FTS experiment, where we show AFM images of catalytic cobalt nanoparticles. The nanoparticles
  • hydrocarbons CnH2n+2, with water as byproduct [24]. We have investigated the reaction on Co nanoparticles deposited on an Al2O3 support, grown on a NiAl(110) single crystal. The NiAl(110) surface has been prepared by repeated cycles of Ar-ion sputtering (3 μA, 1 kV, 30 min) at room temperature followed by
  • the main setup, the sample is annealed at 800 K in 10−6 mbar of O2 to remove carbon impurities and replenish the oxygen in the oxide layer. The composition of the surface was verified by AES (not shown here). The cobalt nanoparticles were deposited by e-beam evaporation with a Co rod, an emission
PDF
Album
Full Research Paper
Published 21 Mar 2025

Engineered PEG–PCL nanoparticles enable sensitive and selective detection of sodium dodecyl sulfate: a qualitative and quantitative analysis

  • Soni Prajapati and
  • Ranjana Singh

Beilstein J. Nanotechnol. 2025, 16, 385–396, doi:10.3762/bjnano.16.29

Graphical Abstract
  • , labor-intensive, and require specialized technical expertise. This study developed a novel colorimetric method for the selective and sensitive detection of SDS, utilizing polyethylene glycol-polycaprolactone nanoparticles (PEG–PCL NPs) synthesized via a ring-opening polymerization approach. The
  • synthesized nanoparticles exhibited a distinct colorimetric response to SDS when combined with the Bradford reagent, which acted as a linker molecule. Interference studies demonstrated the high selectivity of the method, even in the presence of various heavy metals and other surfactants. The method showed
  • selectivity and sensitivity for SDS detection, making it a promising analytical tool for rapid and onsite estimation. Keywords: Bradford reagent; environmental monitoring; PEG–PCL nanoparticles; SDS; SDS detection; Introduction Sodium dodecyl sulfate (SDS), or sodium lauryl sulfate, is an anionic surfactant
PDF
Album
Full Research Paper
Published 20 Mar 2025

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • mucoadhesive drug delivery system that was developed to fulfill these requirements. Alginate nanoparticles were synthesized by water-in-oil emulsification followed by external gelation and then coated with the mucoadhesive polymer Eudragit RS100. The formulated nanoparticles had a mean size of 219 nm and
  • positive charge. A peptide, as a model drug, was loaded onto the nanoparticles with an encapsulation efficiency of 58%. The release of the model drug from the delivery system was pH-independent and lasted for 7 days. The periodic acid–Schiff stain assay indicated 69% mucin interaction for the nanoparticles
  • , which were also capable of diffusion through artificial mucus. The nanoparticles were not toxic to gastric epithelial cells and can be internalized by the cells within 4 h. The adsorption of nanoparticles onto mucus-secreting gastric cells was found to be correlated with cell number. The delivery system
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • , University of Rochester, Rochester, New York 14627, United States 10.3762/bjnano.16.26 Abstract We developed a novel pulsed laser-assisted process for the fabrication of advanced composites of nonequilibrium gold nanoparticles on carbon fiber paper supports. Our one-step process integrates the generation of
  • nanoparticles with their surface attachment and solves longstanding nanoparticle adhesion and electrical contact issues. Irradiation of hydrophilic carbon fiber paper submerged in aqueous HAuCl4 solution by nanosecond laser pulses produced composites with uniform distribution of gold nanoparticles on carbon
  • fibers, taking advantage of the high internal surface area of carbon fiber paper. The pulsed laser-grafted composites exhibited zero measurable charge transfer resistance between gold nanoparticles and the carbon support, leading to superior cathode performance over conventionally prepared electrodes for
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • exposure to starch-capped silver nanoparticles (AgNPs) [11]. Gemcitabine-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles have been shown to enhance cell death in chemoresistant PANC1 cells, human pancreatic epithelial carcinoma cells [12]. Also, TiO2 nanoparticles can sensitize A549 cells
  • , human lung epithelial carcinoma cells towards the genotoxic agent methyl methanesulphonate through disruption of the DDR process [13]. Recently, ZnO nanoparticles induced significant cytotoxicity and DNA double-strand breaks in SKOV3 cells, human ovarian epithelial cancer cells, through induction of
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Fabrication and evaluation of BerNPs regarding the growth and development of Streptococcus mutans

  • Tuyen Huu Nguyen,
  • Hong Thanh Pham,
  • Kieu Kim Thanh Nguyen,
  • Loan Hong Ngo,
  • Anh Ngoc Tuan Mai,
  • Thu Hoang Anh Lam,
  • Ngan Thi Kim Phan,
  • Dung Tien Pham,
  • Duong Thuy Hoang,
  • Thuc Dong Nguyen and
  • Lien Thi Xuan Truong

Beilstein J. Nanotechnol. 2025, 16, 308–315, doi:10.3762/bjnano.16.23

Graphical Abstract
  • Faculty of Medical Technology, Van Lang University, Ho Chi Minh City, Vietnam Department of Biotechnology, Nong Lam University, Ho Chi Minh City, Vietnam Faculty of Pharmacy, Van Lang University, Ho Chi Minh City, Vietnam 10.3762/bjnano.16.23 Abstract In this study, berberine nanoparticles (BerNPs) were
  • formation of S. mutans. In summary, BerNPs demonstrated a potent inhibitory effect on the activities of S. mutans at selectively applied concentrations. Keywords: antibacterial; berberine nanoparticles; BerNPs; biofilm; FE-SEM; Streptococcus mutans; Introduction According to the Global Burden of Disease
  • inhibitory activity against pathogenic bacteria have been reported. In 2022, Nguyen et al. fabricated berberine nanoparticles (BerNPs) by antisolvent precipitation (ASP) using glycerol as a safe organic solvent and evaluated their antibacterial activity on S. aureus and E. coli O157:H7 [12]. Additionally
PDF
Album
Full Research Paper
Published 27 Feb 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • also be used to incorporate nanoparticles into the nanofiber structures through simultaneous electrospinning and electrospraying [88]. In co-electrospinning, the interaction between charged jets for nozzles that are positioned close to one another may cause jet repulsion for nozzles of the same
  • nanocomposites have been produced through the substantial utilization of nanoparticles. The development of fibrous nanocomposites or bio-nanocomposites, where the matrix and/or fillers are biomaterials, has been advanced in recent years by introducing nanoscale materials into electrospun fibers in the form of
  • compared to electrospun fibers without nanoclay. This improvement is due to the dispersion of nanoparticles within the polymer matrices, which plays an important role in enhancing the physical and mechanical properties of electrospun nanofiber [169]. The purpose of surface modification is to increase the
PDF
Album
Review
Published 26 Feb 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • capabilities in degrading CIP (82.6% within 2 h) and generating hydrogen from rainwater. The effective separation and mobility of photogenerated charge carriers were credited to the role of Ag nanoparticles as electron mediators. There are some other observations, which are shown below in Table 4. Graphene
PDF
Album
Review
Published 25 Feb 2025

Preferential enrichment and extraction of laser-synthesized nanoparticles in organic phases

  • Theo Fromme,
  • Maximilian L. Spiekermann,
  • Florian Lehmann,
  • Stephan Barcikowski,
  • Thomas Seidensticker and
  • Sven Reichenberger

Beilstein J. Nanotechnol. 2025, 16, 254–263, doi:10.3762/bjnano.16.20

Graphical Abstract
  • Chemical Engineering, Laboratory for Industrial Chemistry, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany 10.3762/bjnano.16.20 Abstract Pulsed laser ablation in liquids (LAL) is an established preparation method of nanoparticles and catalysts, which additionally allows to chemically
  • modify the nanomaterials in situ via chemical reactions of the nanoparticles with the molecules or solutes of the liquid. Particularly when organic solvents are used as liquids, photothermally induced C–C cleavage, addition or dehydrogenation reactions of the solvents, as well as (carbon
  • ) functionalization of the nanoparticles have been observed, which ultimately should affect their lipophilicity and, hence, colloidal stability in apolar or polar solvents. Two-phase liquid systems and the possibility to transfer the surfactant-free nanoparticles from one liquid phase into another remain practically
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • incorporation of TMZ in organic and inorganic nanomaterials and their hybrids, designed in a wide variety of shapes such as nanoparticles (NPs), conjugates, dendrimers, and liposomes [35]. With various bioengineering techniques, the nanomaterials’ size, shape, and surface properties were modified to improve
  • . The same was also confirmed in a systematic review related to the cell toxicity and immunological effects of CNs, in which the toxicity of CNs followed the order: fullerenes < carbon black nanoparticles < MWCNTs < SWCNTs < graphene [69]. Regarding the surface modification, findings from all studies
PDF
Album
Full Research Paper
Published 19 Feb 2025

Synthesis and the impact of hydroxyapatite nanoparticles on the viability and activity of rhizobacteria

  • Bedah Rupaedah,
  • Indrika Novella,
  • Atiek Rostika Noviyanti,
  • Diana Rakhmawaty Eddy,
  • Anna Safarrida,
  • Abdul Hapid,
  • Zhafira Amila Haqqa,
  • Suryana Suryana,
  • Irwan Kurnia and
  • Fathiyah Inayatirrahmi

Beilstein J. Nanotechnol. 2025, 16, 216–228, doi:10.3762/bjnano.16.17

Graphical Abstract
  • . Furthermore, they require only small quantities for utilization [8]. Several types of nanoparticles have been employed as carriers for rhizobacteria inoculants, including silica nanoparticles [9], clay nanoparticles [8], carbon nanoparticles [10], zinc oxide nanoparticles [11], and calcium carbonate
  • nanoparticles [12]. Among these, nanohydroxyapatite (nHA) offers distinct advantages over other nanoparticles regarding the application as a carrier for rhizobacteria, particularly in terms of phosphorus supply [13], biological compatibility [14], and high adsorption capacity [15]. Consequently, nHA not only
  • ][23]. Modern research endeavors are marked by a range of pioneering developments regarding hydroxyapatite (HA), aimed at creating highly effective HA nanoparticles customized for the use as carrier materials. These nanoparticles are undergoing thorough examination as carriers for rhizobacteria
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • selectively limits the photothermal conversion processes to the target tissue area, resulting in highly efficient, precise, and safe treatments [38][39]. 2.1 Plasmonic metal nanoparticles The vibrant colors of metals are indicative of their tendency to absorb light at single wavelengths, rather than across
  • -tumor efficacy both in vitro and in vivo [106]. Additionally, Au nanoparticles synthesized using fucoidan (Fu-AuNPs) loaded with the chemotherapy drug doxorubicin (DOX), effectively inhibit choroidal melanoma via a synergistic PTT–chemotherapy approach [107]. Fu, as a reducing agent, assisted in the
  • synthesis of AuNPs and served as a surface coating for AuNPs, promoting the coupling of DOX, enhancing anti-tumor activity, and improving the biocompatibility of AuNPs. The significant extinction coefficient of these nanoparticles enhances the contrast in photoacoustic imaging within the tumor region
PDF
Album
Review
Published 17 Feb 2025
Other Beilstein-Institut Open Science Activities