Search results

Search for "thermal conductivity" in Full Text gives 128 result(s) in Beilstein Journal of Nanotechnology.

Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion

  • Qianyi Cui,
  • Gangqiang Qin,
  • Weihua Wang,
  • Lixiang Sun,
  • Aijun Du and
  • Qiao Sun

Beilstein J. Nanotechnol. 2019, 10, 540–548, doi:10.3762/bjnano.10.55

Graphical Abstract
  • efficiency. As an analogue of graphene, boron nitride (BN) nanomaterials have sparked worldwide interest in exploring their applications in many fields, both experimentally and theoretically, due to their excellent properties, such as high chemical stability, thermal conductivity, oxidation resistance and
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • absorbance spectra were measured using a UV–visible spectrophotometer (Thermo Fisher Scientific). Gas chromatography coupled with mass spectrometry (GC–MS) was carried out on an Agilent 7890A instrument with both a thermal conductivity detector and a flame ionization detector and using helium as a carrier
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Graphene–graphite hybrid epoxy composites with controllable workability for thermal management

  • Idan Levy,
  • Eyal Merary Wormser,
  • Maxim Varenik,
  • Matat Buzaglo,
  • Roey Nadiv and
  • Oren Regev

Beilstein J. Nanotechnol. 2019, 10, 95–104, doi:10.3762/bjnano.10.9

Graphical Abstract
  • , these additives enhance the thermal conductivity of the composite, but on the other hand, they increase the viscosity of the composite and hence impair its workability. This in turn could negatively affect the device–matrix interface. To address this problem, we suggest a tunable composite material
  • comprising a combination of two different carbon-based fillers, graphene nanoplatelets (GNPs) and graphite. By adjusting the GNP:graphite concentration ratio and the total concentration of the fillers, we were able to fine tune the thermal conductivity and the workability of the hybrid polymer composite. To
  • facilitate the optimal design of materials for thermal management, we constructed a ‘concentration–thermal conductivity–viscosity phase diagram’. This hybrid approach thus offers solutions for thermal management applications, providing both finely tuned composite thermal properties and workability. We
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics

  • Franziska Ringleb,
  • Stefan Andree,
  • Berit Heidmann,
  • Jörn Bonse,
  • Katharina Eylers,
  • Owen Ernst,
  • Torsten Boeck,
  • Martina Schmid and
  • Jörg Krüger

Beilstein J. Nanotechnol. 2018, 9, 3025–3038, doi:10.3762/bjnano.9.281

Graphical Abstract
  • electrical and high thermal conductivity, the photoresist SU8 was used for this purpose. In order to apply the photoresist, a precursor solution was distributed evenly on the sample via spin coating (Figure 12b). Subsequently, this solution was photochemically converted into SU8 and cured by means of thermal
PDF
Album
Review
Published 12 Dec 2018

Time-resolved universal temperature measurements using NaYF4:Er3+,Yb3+ upconverting nanoparticles in an electrospray jet

  • Kristina Shrestha,
  • Arwa A. Alaulamie,
  • Ali Rafiei Miandashti and
  • Hugh H. Richardson

Beilstein J. Nanotechnol. 2018, 9, 2916–2924, doi:10.3762/bjnano.9.270

Graphical Abstract
  • conduction. Equation 1 can be simplified to where the rate of energy absorption, A, is and the rate of heat release, B, depends upon the size of the heated object [42][43]: Here, T* is equal to the temperature change (T − T0), kw is the thermal conductivity of water (0.6 W·m−1·K−1), CP,w is the heat
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2018

Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications

  • Sri Kasi Matta,
  • Chunmei Zhang,
  • Yalong Jiao,
  • Anthony O'Mullane and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1247–1253, doi:10.3762/bjnano.9.116

Graphical Abstract
  • calculations and are in agreement with experimental observations. A recently reported computational study on 2D GeAs2 was performed to investigate its thermal conductivity and its suitability for thermoelectric applications [10]. In order to further study GeAs2 and to compare it with a similar material from
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • , wettability, electrical and thermal conductivity, catalytic activity, light absorption and scattering resulting in enhanced performance over their bulk counterparts. A nanometer (nm) is an International System of Units (Système international d'unités, SI) unit that represents 10−9 meter in length. In
PDF
Album
Review
Published 03 Apr 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
PDF
Review
Published 27 Feb 2018

Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil–water separation

  • Zhaoyang Xu,
  • Huan Zhou,
  • Sicong Tan,
  • Xiangdong Jiang,
  • Weibing Wu,
  • Jiangtao Shi and
  • Peng Chen

Beilstein J. Nanotechnol. 2018, 9, 508–519, doi:10.3762/bjnano.9.49

Graphical Abstract
  • environment, CNFs with a high aspect ratio and high surface area have potential for forming a 3D network structure. As a result, research on cellulose aerogels has attracted more and more attention because of its outstanding properties such as high porosity, low thermal conductivity and low density [9][10
PDF
Album
Full Research Paper
Published 12 Feb 2018

Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation

  • Arjun Behera,
  • Debasmita Kandi,
  • Sanjit Manohar Majhi,
  • Satyabadi Martha and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 436–446, doi:10.3762/bjnano.9.42

Graphical Abstract
  • magnetic in nature [10][11][12][13]. Among different metal ferrite materials, zinc ferrite (ZnFe2O4) plays a significant role because of its low band gap (1.88 eV), high thermal conductivity, good chemical stability, higher specific strength, magneto-resistive and magneto optical properties and low
PDF
Album
Full Research Paper
Published 05 Feb 2018

Engineering of oriented carbon nanotubes in composite materials

  • Razieh Beigmoradi,
  • Abdolreza Samimi and
  • Davod Mohebbi-Kalhori

Beilstein J. Nanotechnol. 2018, 9, 415–435, doi:10.3762/bjnano.9.41

Graphical Abstract
  • fabricated with a smaller average diameter have significantly better mechanical properties. Gulotty et al. have reported that CNTs with a longer and larger diameter more efficiently improve the thermal conductivity of polymer composites [10]. Furthermore, it has been shown that for biological applications
PDF
Album
Review
Published 05 Feb 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
  • Si. SiC is a wide bandgap (2.4–3.3 eV) semiconductor with a bulk Young’s modulus of 400–500 GPa [136] and high thermal conductivity on the order of 330 W∙m−1∙K−1 for bulk 3C–SiC [137], a larger than 1 MV cm−1 breakdown electric field as well as a high melting temperature. Regarding its elastic
  • current flow through the contact causes immediate strengthening of the nanocontact, which gradually develops until the current density of 10−3–10−2 nA/nm2 (Figure 9b) is reached. Self-heating behaviour in the switching element/electrode contact is determined by a combination of its electrical and thermal
  • conductivity [10][96][99]. If there is a low current density in the contact (in the range of 1 pA/nm2) and a good thermal contact, the temperature changes modestly (ΔT < 30 K) and almost no Joule heating occurs [10]. However, even at current densities as low as 3 pA/nm2, energy dissipation in the contact may
PDF
Album
Review
Published 25 Jan 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • effects of different nanocomponents. In recent years, BN nanostructures have been in the focus due to advantageous combination of properties, such as high tensile strength and elastic modulus, superb chemical stability, biocompatibility, high thermal conductivity and perfect electrical insulation. This
  • explains their rich functionality in reinforcement of ultralight metals and ceramics, improvement of thermal conductivity and mechanical strength of diverse polymers, production of transparent superhydrophobic films, and quantum electronic and photonic devices [1][2][3][4]. BN nanomaterials have also been
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire

  • Tino Wagner,
  • Fabian Menges,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2018, 9, 129–136, doi:10.3762/bjnano.9.15

Graphical Abstract
  • transfer lengths below 1 μm. With the KFM measurement and data analysis, we were able to extract all key parameters describing the electronic behaviour of the nanowire device. This model allows us to also predict the thermal behaviour and to compare with SThM measurements, given the thermal conductivity of
  • temperature beneath them inaccessible to SThM.) The thermal conductivity of the InAs nanowire, κ = (3.0 ± 1.4) W·m−1·K−1, is in good agreement with measurements of similar InAs nanowires in microelectromechanical heater/sensor setups [31][32], or with measurements of a 40 nm thick InAs nanofilm [33]. Note
  • that stacking faults perpendicular to the growth direction limit the thermal conductivity of our nanowire [31][34], compared to higher-quality crystalline InAs nanowires [35]. We calculate the interfacial thermal conductivity to the substrate and electrodes along the perimeter of the nanowire from the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018

Design of photonic microcavities in hexagonal boron nitride

  • Sejeong Kim,
  • Milos Toth and
  • Igor Aharonovich

Beilstein J. Nanotechnol. 2018, 9, 102–108, doi:10.3762/bjnano.9.12

Graphical Abstract
  • -resonators such as a high chemical stability and an excellent thermal conductivity [22][23]. In this work, we propose to use hBN for the fabrication of photonic crystal cavities (PCCs). We design two dimensional (2D) PCCs and show that they have high quality-factor (Q-factor) resonances in the visible
PDF
Album
Letter
Published 09 Jan 2018

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

  • Ling Liu,
  • Jingjing Shi,
  • Hongxia Cao,
  • Ruiyu Wang and
  • Ziwu Liu

Beilstein J. Nanotechnol. 2017, 8, 2425–2437, doi:10.3762/bjnano.8.241

Graphical Abstract
  • analyzed by inductively coupled plasma mass spectrometry (ICP-MS, Agilent NWR 213-7900). Hydrogen temperature programmed reduction (H2-TPR) experiment was performed on a PCA-1200 instrument, equipped with a thermal conductivity detector (TCD) to detect H2 consumption. Typically, 50 mg of the sample was
PDF
Album
Full Research Paper
Published 16 Nov 2017

In situ controlled rapid growth of novel high activity TiB2/(TiB2–TiN) hierarchical/heterostructured nanocomposites

  • Jilin Wang,
  • Hejie Liao,
  • Yuchun Ji,
  • Fei Long,
  • Yunle Gu,
  • Zhengguang Zou,
  • Weimin Wang and
  • Zhengyi Fu

Beilstein J. Nanotechnol. 2017, 8, 2116–2125, doi:10.3762/bjnano.8.211

Graphical Abstract
  • stability, as well as excellent electrical and thermal conductivity [4][5][6]. On the other hand, titanium nitride (TiN) has some attractive properties, such as high hardness, low electrical resistivity, excellent wear and corrosion resistance [1][2][7]. Therefore, it is expected that these unique
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2017

Freestanding graphene/MnO2 cathodes for Li-ion batteries

  • Şeyma Özcan,
  • Aslıhan Güler,
  • Tugrul Cetinkaya,
  • Mehmet O. Guler and
  • Hatem Akbulut

Beilstein J. Nanotechnol. 2017, 8, 1932–1938, doi:10.3762/bjnano.8.193

Graphical Abstract
  • these carbon materials graphene has become one the most attractive carbon support materials with its extraordinary properties. Graphene is a two-dimensional (2D) atomic-scale honeycomb lattice made of carbon atoms. Its unique properties such as high electrical and thermal conductivity, high chemical
PDF
Album
Full Research Paper
Published 14 Sep 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • contribute to the defect band intensity through graphite structure amorphization and growth orientation [27][47]. The substrate properties such as surface energy, thermal conductivity and atomic density play a major role in determining the structure and morphology of substrate-supported VGNs [24]. In general
PDF
Album
Full Research Paper
Published 10 Aug 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • thin layer to form a 2D hexagonal honeycomb-like structure [42]. The π-conjugated structure in graphene provides ultrafast electron transfer (200,000 cm2·V−1·s−1), very high specific surface area (2600 m2·g−1), and high thermal conductivity (5000 W·w−1·K−1) [43]. In addition to this, graphene possesses
PDF
Album
Review
Published 03 Aug 2017

3D continuum phonon model for group-IV 2D materials

  • Morten Willatzen,
  • Lok C. Lew Yan Voon,
  • Appala Naidu Gandi and
  • Udo Schwingenschlögl

Beilstein J. Nanotechnol. 2017, 8, 1345–1356, doi:10.3762/bjnano.8.136

Graphical Abstract
  • the in-plane and out-of-plane modes due to the mirror symmetry of graphene, leading to fewer scattering channels and, therefore, a higher thermal conductivity compared to, e.g., silicene. Our model reveals that such mode coupling, even when present, would occur for large kz values (due to the small
PDF
Album
Full Research Paper
Published 30 Jun 2017

Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

  • Julia Patzsch,
  • Deepu J. Babu and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 1135–1144, doi:10.3762/bjnano.8.115

Graphical Abstract
  • attractive as a potential material for catalysis and electronic and photonic devices due to its semiconducting nature with a wide band gap, excellent mechanical properties, chemical inertness and thermal conductivity [13][14][15][16][17]. Especially, one-dimensional SiC in the form of nanowires or nanorods
PDF
Album
Full Research Paper
Published 24 May 2017

Investigation of growth dynamics of carbon nanotubes

  • Marianna V. Kharlamova

Beilstein J. Nanotechnol. 2017, 8, 826–856, doi:10.3762/bjnano.8.85

Graphical Abstract
  • hypothesis of a temperature gradient is further challenged for small nm sized particles, which can grow single-walled carbon nanotubes. It is unlikely to play an important role in the growth of SWCNTs, because small catalytic particles have a high thermal conductivity and therefore the temperature gradient
PDF
Album
Review
Published 11 Apr 2017

Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Riccardo Rossi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 592–603, doi:10.3762/bjnano.8.64

Graphical Abstract
  • the sensing active layer so as to restore resistance to the initial baseline with a full recovery without loss of the catalytic effects of metal NPs [35][45]. Above the critical temperature, the desorption of gaseous molecules from the surface of MWCNTs is accelerated by the decrease of the thermal
  • conductivity of MWCNTs [46]. This results in the consequent lowering of the energy barrier, and therefore, a decrease of the sensing response [47][48]. Considering the specific optimum operating temperature of each hybrid sensing system, the sensing response, in terms of electrical resistance variation (ΔR
PDF
Album
Full Research Paper
Published 10 Mar 2017

Tailoring bifunctional hybrid organic–inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu2+ ions

  • Veronika V. Tomina,
  • Inna V. Melnyk,
  • Yuriy L. Zub,
  • Aivaras Kareiva,
  • Miroslava Vaclavikova,
  • Gulaim A. Seisenbaeva and
  • Vadim G. Kessler

Beilstein J. Nanotechnol. 2017, 8, 334–347, doi:10.3762/bjnano.8.36

Graphical Abstract
  • performed by elementary analyzer Vario MACRO cube (Elementar Analysensysteme GmbH, Germany) using a thermal conductivity detector. Helium and oxygen (both purity 99.995%) were used as the carrier and combusting gases, respectively, with 2 bar intake pressure. The combustion tube was set at 1150 °C and the
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2017
Other Beilstein-Institut Open Science Activities