Search results

Search for "high-speed" in Full Text gives 116 result(s) in Beilstein Journal of Nanotechnology.

A review of demodulation techniques for amplitude-modulation atomic force microscopy

  • Michael G. Ruppert,
  • David M. Harcombe,
  • Michael R. P. Ragazzon,
  • S. O. Reza Moheimani and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2017, 8, 1407–1426, doi:10.3762/bjnano.8.142

Graphical Abstract
  • performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in
  • commercial AFM systems. The performance metrics, tracking bandwidth and sensitivity to other frequency components, are especially important in high-speed [15][16][17][18] and multifrequency AFM [19] applications. As the tracking bandwidth directly affects the achievable scan rate, it should be maximized
  • improve upon this constraint [35]. However, the method is still ultimately limited by the low-pass filters that are required to account for residual phase mismatches. For high-speed AFM applications, as required for the study of fast biological processes [36][37], the above methods are not suitable and
PDF
Album
Review
Published 10 Jul 2017

AgCl-doped CdSe quantum dots with near-IR photoluminescence

  • Pavel A. Kotin,
  • Sergey S. Bubenov,
  • Natalia E. Mordvinova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2017, 8, 1156–1166, doi:10.3762/bjnano.8.117

Graphical Abstract
  • use of a high-speed centrifuge (21000g). The details of this separation are presented in Supporting Information File 1 (the procedure of separation between different fractions). PL spectra of the heavy fractions are presented in Figure 7. It was observed that their PL extends deep in the low-energy
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2017

Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination

  • Paolo Visconti,
  • Patrizio Primiceri,
  • Daniele Longo,
  • Luciano Strafella,
  • Paolo Carlucci,
  • Mauro Lomascolo,
  • Arianna Cretì and
  • Giuseppe Mele

Beilstein J. Nanotechnol. 2017, 8, 134–144, doi:10.3762/bjnano.8.14

Graphical Abstract
  • mixture triggered by MWCNTs determines a higher combustion pressure gradient and a higher peak pressure with respect to spark-induced ignition for all the tested methane/air ratios. In addition, the high-speed camera images showed that the light-induced ignition using MWCNT/ferrocene mixtures as ignition
PDF
Album
Full Research Paper
Published 13 Jan 2017

Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

  • Felix Pyatkov,
  • Svetlana Khasminskaya,
  • Vadim Kovalyuk,
  • Frank Hennrich,
  • Manfred M. Kappes,
  • Gregory N. Goltsman,
  • Wolfram H. P. Pernice and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2017, 8, 38–44, doi:10.3762/bjnano.8.5

Graphical Abstract
  • electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices
PDF
Album
Full Research Paper
Published 05 Jan 2017

Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties

  • Ionel Stavarache,
  • Valentin Adrian Maraloiu,
  • Petronela Prepelita and
  • Gheorghe Iordache

Beilstein J. Nanotechnol. 2016, 7, 1492–1500, doi:10.3762/bjnano.7.142

Graphical Abstract
  • . This is closely related to the increase of high-speed operation, good reliability, low power consumption and the decrease of unit price that led to the rapid development of the semiconductor device market and to the continuous downscaling of devices. Regarding the downscaling process, high mobility
PDF
Album
Full Research Paper
Published 21 Oct 2016

Adiabatic superconducting cells for ultra-low-power artificial neural networks

  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Igor I. Soloviev and
  • Maxim V. Tereshonok

Beilstein J. Nanotechnol. 2016, 7, 1397–1403, doi:10.3762/bjnano.7.130

Graphical Abstract
  • receiving and computing are emerging technologies in high-speed/high-frequency electronic applications markets [7]. The advantages of a superconducting digital RF receiver [8] are high sampling rate and quantum precision of quantization, allowing direct digitization of incoming wideband RF signals without
PDF
Album
Letter
Published 05 Oct 2016

Functional diversity of resilin in Arthropoda

  • Jan Michels,
  • Esther Appel and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1241–1259, doi:10.3762/bjnano.7.115

Graphical Abstract
PDF
Album
Review
Published 01 Sep 2016

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
  • , as shown in Figure 7. The thermoplastic pellets mixed with CNTs are fed through an extruder hopper. The CNT agglomerates are dispersed by shear flow created by twin screws rotating at high speed [35]. Abdalla et al. dispersed CNTs by extrusion into EPIKOTE resin EPON 815C (bisphenol A with n-butyl
PDF
Album
Full Research Paper
Published 12 Aug 2016

Advanced atomic force microscopy techniques III

  • Thilo Glatzel and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2016, 7, 1052–1054, doi:10.3762/bjnano.7.98

Graphical Abstract
  • developed an advanced microscope capable of obtaining nanoscale topography as well as mechanical properties by multifrequency AFM at high speed. They combined recent progress in increased imaging speed and photothermal actuation in a unique and versatile AFM head using ultrasmall cantilevers [18]. Single
PDF
Editorial
Published 21 Jul 2016

The hydraulic mechanism in the hind wing veins of Cybister japonicus Sharp (order: Coleoptera)

  • Jiyu Sun,
  • Wei Wu,
  • Mingze Ling,
  • Bharat Bhushan and
  • Jin Tong

Beilstein J. Nanotechnol. 2016, 7, 904–913, doi:10.3762/bjnano.7.82

Graphical Abstract
  • of 488 nm in the retinal camera. The unfolding hind wings process of the hind wings of a flying beetle was photographed with a high-speed camera (OLYMPUS, i-SPEED 3, camera speed of 400 frames/s). The beetle was suspended in front of the camera. A biological pressure sensor and dynamic signal
  • the object and the internal deformation does not affect the whole movement, then the object can be simplified as a rigid body with no penetration of the wall [21]. Results and Discussion Experimental The deployment process of the hind wings of C. japonicus was recorded using a high-speed camera, as
  • , for the realization of the hind wing exercise, torsion was created in the folded position so that the fixed part and moving part of the costa veins were not in a plane (RA vein). Figure 1F and Figure 1G show the vein movement diagram. By using a high-speed camera to observe the folding/unfolding
PDF
Album
Full Research Paper
Published 23 Jun 2016

Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps

  • Simon Poppinga,
  • Tim Kampowski,
  • Amélie Metzger,
  • Olga Speck and
  • Thomas Speck

Beilstein J. Nanotechnol. 2016, 7, 664–674, doi:10.3762/bjnano.7.59

Graphical Abstract
  • Freiburg. General cinematographic analyses For filming fast closure motions, traps were stimulated with a nylon thread on the trigger hairs of one lobe and recorded with a high-speed camera (Motion Scope Y4, Redlake, USA, recording speed 100 fps) in combination with a macro objective lens (Zeiss Makro
  • recorded as described above. Video analyses were performed with Fiji/ImageJ. Comparative kinematical analyses of seedling and adult traps Movements of 12 traps from different seedlings were recorded by using the high-speed-equipment described above and analyzed with Fiji/ImageJ. Trap closure durations in
  • and snapping durations of seedlings and the above mentioned adult traps for significant differences, and additionally analyzed the correlation between seedling trap length and snapping duration. From the high-speed-videos of one additional seedling trap and from an additional adult trap we measured in
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2016

Active multi-point microrheology of cytoskeletal networks

  • Tobias Paust,
  • Tobias Neckernuss,
  • Lina Katinka Mertens,
  • Ines Martin,
  • Michael Beil,
  • Paul Walther,
  • Thomas Schimmel and
  • Othmar Marti

Beilstein J. Nanotechnol. 2016, 7, 484–491, doi:10.3762/bjnano.7.42

Graphical Abstract
  • the motion of the excited particle and the particles in the surrounding is captured by a high speed camera and the positions of each particle over time are determined. In a group of particles, one particle – the reference particle R – is excited to sinusoidal oscillations at a specific frequency ω
  • laser beam with its pivot in the back focal plane of the objective. The CCD high-speed camera records the motion of the microspheres embedded in the examined medium. An additional photodiode is used for the calibration of the trap. C) Image of a microrheology measurement. The white lines show the
PDF
Album
Full Research Paper
Published 24 Mar 2016

Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer

  • Natsumi Inada,
  • Hitoshi Asakawa,
  • Taiki Kobayashi and
  • Takeshi Fukuma

Beilstein J. Nanotechnol. 2016, 7, 409–417, doi:10.3762/bjnano.7.36

Graphical Abstract
  • due to its great potential for many applications. For example, recent advancements in instrumentation of dynamic-mode AFM have enabled atomic-resolution imaging not only in vacuum [2][3][4] but also in liquid [5][6]. In addition, other advanced AFM techniques such as high-speed AFM [7][8][9] and
PDF
Album
Supp Info
Full Research Paper
Published 10 Mar 2016

Counterion effects on nano-confined metal–drug–DNA complexes

  • Nupur Biswas,
  • Sreeja Chakraborty,
  • Alokmay Datta,
  • Munna Sarkar,
  • Mrinmay K. Mukhopadhyay,
  • Mrinal K. Bera and
  • Hideki Seto

Beilstein J. Nanotechnol. 2016, 7, 62–67, doi:10.3762/bjnano.7.7

Graphical Abstract
  • sonication in acetone and ethanol respectively, then rinsing by Millipore water (resistivity ≈ 18.2 MΩ·cm) and subsequent removal of water by spinning the substrate at high speed (4000 rpm). To extract out-of-plane information specular X-ray reflectivity profiles of these thin films were recorded with step
PDF
Album
Full Research Paper
Published 19 Jan 2016

Sonochemical co-deposition of antibacterial nanoparticles and dyes on textiles

  • Ilana Perelshtein,
  • Anat Lipovsky,
  • Nina Perkas,
  • Tzanko Tzanov and
  • Aharon Gedanken

Beilstein J. Nanotechnol. 2016, 7, 1–8, doi:10.3762/bjnano.7.1

Graphical Abstract
  • coating technique guarantees a very good adherence of the deposited NPs to the substrate resulting from the high speed (>500 m/s) at which the NPs are thrown at the substrate by microjets created after the collapse of the acoustic bubbles near a solid surface [8]. The excellent adherence is reflected in
  • synthesized as a result of hydrolysis reaction of metal acetate. The coating is an in situ process which takes place subsequently to the formation of the nanoparticles. High-speed jets that are generated due to the bubble collapse, throw the newly created NPs of MO and the dye, at high speed toward the
PDF
Album
Full Research Paper
Published 04 Jan 2016

Blue and white light emission from zinc oxide nanoforests

  • Nafisa Noor,
  • Luca Lucera,
  • Thomas Capuano,
  • Venkata Manthina,
  • Alexander G. Agrios,
  • Helena Silva and
  • Ali Gokirmak

Beilstein J. Nanotechnol. 2015, 6, 2463–2469, doi:10.3762/bjnano.6.255

Graphical Abstract
  • electrical contact (Figure 1c). The probe separation for all electrical measurements was ≈10–15 µm. Either a high-sensitivity 1080p HD camcorder with a frame rate of 60 fps (Sony, HDR-CX160) or a high-speed camera with a maximum of 1200 fps (Casio, EX-F1) was connected to the microscope head for imaging
  • to a probe arm and was aligned to the test area using a micromanipulator. A high-speed PIN diode with built-in amplifier was attached to another micromanipulator and was positioned to face the test area in order to detect the emitted light intensity with better time resolution. The distance from the
  • arrangement. The schematics of a typical measurement setup with a pulse generating unit (PGU). An optical spectrometer was used to perform spectral analysis with time resolution of ≥1 ms in the 200–1100 nm range. Frames extracted from high-speed videos showing light emission and changing percolation paths
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2015

Self-organization of gold nanoparticles on silanated surfaces

  • Htet H. Kyaw,
  • Salim H. Al-Harthi,
  • Azzouz Sellai and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2015, 6, 2345–2353, doi:10.3762/bjnano.6.242

Graphical Abstract
  • Nanotechnolgy at Sultan Qaboos University and SQU-UAE 2013 funding project (Study of graphene field effect transistors for high speed applications).
PDF
Album
Full Research Paper
Published 10 Dec 2015

Mapping bound plasmon propagation on a nanoscale stripe waveguide using quantum dots: influence of spacer layer thickness

  • Chamanei S. Perera,
  • Alison M. Funston,
  • Han-Hao Cheng and
  • Kristy C. Vernon

Beilstein J. Nanotechnol. 2015, 6, 2046–2051, doi:10.3762/bjnano.6.208

Graphical Abstract
  • are a coherent oscillation of electrons in a metal [1]. Loosely bound electrons can combine with incoming photons and propagate along the metal/dielectric interface. These charge density waves create a strong near-field [1]. There is increasing demand for high speed data communication as well as
  • miniaturised devices, and plasmonics is a possible solution that can provide both the high speed and miniaturisation [2][3]. Plasmonics enables the squeezing of optical waves into miniscule structures and manipulating these waves to achieve all-optical circuits. Metal waveguides are a popular method to route
PDF
Album
Full Research Paper
Published 19 Oct 2015

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • thus provide a HRTEM image with an acceptable signal to noise ratio with only limited damage to the sample. The introduction of a high-speed detector may also have an impact on increasing the time resolution. In a molecular dynamics simulations on the reconstruction of vacancies, the time scale is
  • often restricted to picoseconds [45], whereas in TEM the time resolution is at the order of 1 s [51] or 80 ms [52]. Under these conditions, it is more likely that the resulting image shows the time-relaxed state of the sample. A high-speed detector may facilitate the imaging of more intermediate states
PDF
Album
Review
Published 16 Jul 2015

Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

  • Kai Braun,
  • Xiao Wang,
  • Andreas M. Kern,
  • Hilmar Adler,
  • Heiko Peisert,
  • Thomas Chassé,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2015, 6, 1100–1106, doi:10.3762/bjnano.6.111

Graphical Abstract
  • applications. Furthermore, this concept represents the basis for novel ultra-small, fast, optically and electronically switchable devices which could find applications in high-speed signal processing and optical telecommunications. Sequences of tip-enhanced spectra (a,b) (Raman lines on luminescence background
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2015

High-frequency multimodal atomic force microscopy

  • Adrian P. Nievergelt,
  • Jonathan D. Adams,
  • Pascal D. Odermatt and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2014, 5, 2459–2467, doi:10.3762/bjnano.5.255

Graphical Abstract
  • has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale
PDF
Album
Full Research Paper
Published 22 Dec 2014

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • , balitorid loaches and loricariid catfishes also have specialized suction discs, which help them to stay in place in the high-speed currents in stream environments [62][63][64]. Some gobies are even able to climb waterfalls by using a pelvic fin derived suction disc [63][65]. Moreover, lampreys are able to
PDF
Album
Review
Published 17 Dec 2014

High speed e-beam lithography for gold nanoarray fabrication and use in nanotechnology

  • Jorge Trasobares,
  • François Vaurette,
  • Marc François,
  • Hans Romijn,
  • Jean-Louis Codron,
  • Dominique Vuillaume,
  • Didier Théron and
  • Nicolas Clément

Beilstein J. Nanotechnol. 2014, 5, 1918–1925, doi:10.3762/bjnano.5.202

Graphical Abstract
  • ; high-speed e-beam lithography; molecular electronics; nanoarray; self-assembled monolayers; XPS; Introduction Well-ordered arrays of nanoparticles are already showing exciting applications in nanotechnology, including materials science [1][2][3][4][5], electronics [6][7][8][9][10], biology [11][12][13
  • covalent bond is one of the most promising methods for low-cost and high speed fabrication of such gold nanoarrays [18]. However, to keep the versatility, well positioning and reliable nanoarray fabrication offered by e-beam lithography, another way is to notice that high-speed e-beam writing can be
  • specifically developed for such nanoarray fabrication. Such high-speed e-beam technique called “dot-on-the-fly” (DOTF) has been previously developed for 25 nm diameter periodic metal patterns fabrication [19] and more recently for making 14 nm diameter holes for thermoelectricity application [20]. DOTF
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2014

A sonochemical approach to the direct surface functionalization of superparamagnetic iron oxide nanoparticles with (3-aminopropyl)triethoxysilane

  • Bashiru Kayode Sodipo and
  • Azlan Abdul Aziz

Beilstein J. Nanotechnol. 2014, 5, 1472–1476, doi:10.3762/bjnano.5.160

Graphical Abstract
  • microjets with huge pressure and high speed are produced, which are transferred into the liquid solution, thereby creating a mechanical stirring effect [20]. As demonstrated in Scheme 1, these unique conditions generated from the sonochemical environment are harnessed to produce a facile and rapid
PDF
Album
Supp Info
Letter
Published 08 Sep 2014

Sublattice asymmetry of impurity doping in graphene: A review

  • James A. Lawlor and
  • Mauro S. Ferreira

Beilstein J. Nanotechnol. 2014, 5, 1210–1217, doi:10.3762/bjnano.5.133

Graphical Abstract
  • Introduction With its excellent transport properties and low dimensionality, graphene, an atomically thin layer of Carbon atoms bonded together in a hexagonal lattice, initially seems a strong candidate for use in many future commercial applications such as ultra high-speed transistors, integrated circuits and
PDF
Album
Review
Published 05 Aug 2014
Other Beilstein-Institut Open Science Activities