Search results

Search for "viruses" in Full Text gives 81 result(s) in Beilstein Journal of Nanotechnology.

Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects

  • Li Shang,
  • Karin Nienhaus,
  • Xiue Jiang,
  • Linxiao Yang,
  • Katharina Landfester,
  • Volker Mailänder,
  • Thomas Simmet and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2014, 5, 2388–2397, doi:10.3762/bjnano.5.248

Graphical Abstract
  • , especially in view of possible implications regarding biosafety and biomedical applications of nanomaterials [1][2][3][4][5]. Because NPs have sizes similar to those of biological molecules and assemblies such as proteins or viruses, they are able to invade cells by hijacking the cellular endocytosis
  • material, e.g., lipoprotein particles, protein assemblies, viruses and NPs, these are typically encapsulated in vesicles and selectively transported into and out of the cells via endocytosis and exocytosis, respectively [9][10]. Depending on the size of the transport vesicle, cargo properties and the
PDF
Album
Full Research Paper
Published 11 Dec 2014

Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin

  • Alexander Harder,
  • Mareike Dieding,
  • Volker Walhorn,
  • Sven Degenhard,
  • Andreas Brodehl,
  • Christina Wege,
  • Hendrik Milting and
  • Dario Anselmetti

Beilstein J. Nanotechnol. 2013, 4, 510–516, doi:10.3762/bjnano.4.60

Graphical Abstract
  • facilitates an optical resolution down to 20 nm. Furthermore, the use of standard mass-produced AFM cantilevers spares elaborate probe production or modification processes. We investigated tobacco mosaic viruses and the intermediate filament protein desmin. Both are mixed complexes of building blocks, which
  • for an adequate signal to noise ratio (SNR). Besides, fluorescence and topography data are inherently aligned allowing easy superposition and localization of single fluorescence peaks within topographic features. Many biological systems from single molecules to cells and viruses are mixed complexes
PDF
Album
Full Research Paper
Published 11 Sep 2013

Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli

  • Kiran Gupta,
  • R. P. Singh,
  • Ashutosh Pandey and
  • Anjana Pandey

Beilstein J. Nanotechnol. 2013, 4, 345–351, doi:10.3762/bjnano.4.40

Graphical Abstract
  • microorganisms including bacteria, fungi and viruses, because it has high photoreactivity, broad-spectrum antibiosis and chemical stability [1][2][3][4][5][6]. The photocatalytic activity of annealed TiO2 sturdily depends upon its existing phase, i.e., anatase, rutile, brokite. The anatase phase shows an
PDF
Album
Correction
Full Research Paper
Published 06 Jun 2013

Paper modified with ZnO nanorods – antimicrobial studies

  • Mayuree Jaisai,
  • Sunandan Baruah and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2012, 3, 684–691, doi:10.3762/bjnano.3.78

Graphical Abstract
  • cause of extensive damage to precious books and manuscripts [1][2]. In relation to this, documents in hospitals and research centers are carriers of infectious agents, such as disease-causing bacteria and viruses. Extreme care needs to be taken especially by people working in such organizations while
PDF
Album
Full Research Paper
Published 11 Oct 2012

Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

  • Miriam Jaafar,
  • David Martínez-Martín,
  • Mariano Cuenca,
  • John Melcher,
  • Arvind Raman and
  • Julio Gómez-Herrero

Beilstein J. Nanotechnol. 2012, 3, 336–344, doi:10.3762/bjnano.3.38

Graphical Abstract
  • conditions in both regimes. In liquid, the absence of significant van der Waals forces results in a monotonic interaction [4] and the feedback in both FM and AM is often perfectly stable. However biological samples, such as viruses, tend to contaminate the tip and introduce attractive interactions causing FM
  • high resolution. FM is able to overcome the limitations of AM making it possible to obtain high-quality images of the viruses and other biological samples [29][30]. However, FM is only stable while the tip is clean and the conservative interaction is repulsive, but once the tip becomes contaminated
  • magnitudes grow monotonically with the tip–sample distance. Figure 7b shows this dependence again with the same tip but this time contaminated after scanning a highly oriented pyrolytic graphite (HOPG) substrate with viruses adsorbed on it. While the dissipation is still monotonic, the frequency shift is not
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2012

Magnetic nanoparticles for biomedical NMR-based diagnostics

  • Huilin Shao,
  • Tae-Jong Yoon,
  • Monty Liong,
  • Ralph Weissleder and
  • Hakho Lee

Beilstein J. Nanotechnol. 2010, 1, 142–154, doi:10.3762/bjnano.1.17

Graphical Abstract
  • to sensitively identify and quantify a wide range of biological targets including DNA/mRNA, proteins, enzyme activities, small molecules/drugs, bacteria, viruses and mammalian tumor cells, as summarized in Table 2. As described previously, the detection mode of DMR depends on the size of its target
PDF
Album
Review
Published 16 Dec 2010
Other Beilstein-Institut Open Science Activities