Search results

Search for "CdS" in Full Text gives 106 result(s) in Beilstein Journal of Nanotechnology.

Graphical Abstract
  • containing Zn(NO3), Co(NO3), nitric acid, and polyvinylpyrrolidone (PVP) as an additive, 300 nm diameter Zn1−xCoxO nanowires with x ranging from 0.01 to 0.05 were grown [94]. The synthesis and properties of semiconducting CdTe and CdS nanowires are being investigated for their potential in photodetector and
  • photovoltaic applications. CdTe and CdS rods are mostly synthesized by chemical vapour deposition, and sol–gel processes. Electrodeposition of stoichiometric CdTe nanowires with diameters between 80 nm and 1 μm was reported by Enculescu et al. [95]. In addition to SEM, TEM, EDX, and XRD characterization, they
  • . Polyvinylpyrrolidone (1 g/L) was added as a wetting agent. A Pt foil and a SCE acted as counter and reference electrode, respectively. The potentiostatic electrodeposition of CdS nanowires by using an electrolyte solution containing CdCl2 and thioacetamide, at 70 °C was reported by Mo et al. [99]. Finally, due to its
PDF
Album
Review
Published 17 Dec 2012

Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

  • Fredy Mesa,
  • William Chamorro,
  • William Vallejo,
  • Robert Baier,
  • Thomas Dittrich,
  • Alexander Grimm,
  • Martha C. Lux-Steiner and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2012, 3, 277–284, doi:10.3762/bjnano.3.31

Graphical Abstract
  • to be developed. We present an investigation of the Cu3BiS3 absorber layer and the junction formation with CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20–100 nm, and a considerably smaller work-function
  • distribution for In2S3 compared to that of CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate negatively charged Cu3BiS3 grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate
  • photovoltaic active interface with a SPV of ~130 mV [7]. It is well known from the Cu(In,Ga)Se2 solar cells that a buffer layer is required between the n-ZnO window and the p-type absorber layer to reach high efficiency values [8]. Traditionally, CdS deposited by chemical bath deposition (CBD) has been used as
PDF
Album
Full Research Paper
Published 23 Mar 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
PDF
Album
Review
Published 20 Dec 2011

Extended X-ray absorption fine structure of bimetallic nanoparticles

  • Carolin Antoniak

Beilstein J. Nanotechnol. 2011, 2, 237–251, doi:10.3762/bjnano.2.28

Graphical Abstract
  • several examples can be found for EXAFS analysis on nanoparticle systems, e.g., Co [8], CdS [9], CdSe [10], SnO2 [11] and Au [12] nanoparticles, as well as Ag nanoparticles embedded in glass [13][14]. To discuss the advantages and possible drawbacks of EXAFS analysis in nanoparticulate systems, this paper
PDF
Album
Review
Published 11 May 2011

Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions

  • Masao Kaneko,
  • Hirohito Ueno and
  • Junichi Nemoto

Beilstein J. Nanotechnol. 2011, 2, 127–134, doi:10.3762/bjnano.2.15

Graphical Abstract
  • second band structure whose Efb lies near the redox potential of the iron complex on the TiO2 surface. The photocurrents increased with repeated scans. In a previous paper [14] by one of the present authors (MK), both Schottky junction and ohmic contact behavior were found at a single crystal CdS
  • photoanode with RuO2 fine powder attached to the surface and coated with a thin film of polymer-pendant Ru(bpy)32+ on top of the RuO2. It was clear that the CdS formed a Schottky junction with the redox electrolyte solution, and in addition, the RuO2 formed an ohmic contact with the CdS, and the coated
PDF
Album
Full Research Paper
Published 28 Feb 2011

Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites

  • Jana Bomm,
  • Andreas Büchtemann,
  • Angela Fiore,
  • Liberato Manna,
  • James H. Nelson,
  • Diana Hill and
  • Wilfried G. J. H. M. van Sark

Beilstein J. Nanotechnol. 2010, 1, 94–100, doi:10.3762/bjnano.1.11

Graphical Abstract
  • Society, Copernicus Institute of Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the Netherlands 10.3762/bjnano.1.11 Abstract Highly luminescent nanocomposites were prepared by incorporating CdSe/CdS core/shell nanorods into different polymer matrices. The
  • thermal stability. It can be obtained from renewable resources such as wood or cotton. Moreover, it has already been found to be a suitable matrix for embedding CdSe/ZnS QDs [11][12][13]. The structure of CTA is shown in Figure 1. We used CdSe/CdS nanorods with two different sizes, longer rods with an
  • within these agglomerates is ~2 nm. Conclusion We have prepared highly transparent (>93%) luminescent (QE = 70%) nanocomposites from CdSe/CdS core/shell nanorods in PLMA plates and CTA thin layers. A high QE is observed at low nanorod concentrations (0.008 wt %) in PLMA, corresponding to a concentration
PDF
Album
Full Research Paper
Published 29 Nov 2010
Other Beilstein-Institut Open Science Activities