Search results

Search for "biosensors" in Full Text gives 145 result(s) in Beilstein Journal of Nanotechnology.

Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform

  • M. Fátima Barroso,
  • M. Alejandra Luna,
  • Juan S. Flores Tabares,
  • Cristina Delerue-Matos,
  • N. Mariano Correa,
  • Fernando Moyano and
  • Patricia G. Molina

Beilstein J. Nanotechnol. 2016, 7, 655–663, doi:10.3762/bjnano.7.58

Graphical Abstract
  • , biodegradability and biocompatibility, so that they are utilized as versatile carriers in the fields of medical and analytical applications [1][2][3][4]. Several strategies employing vesicles in analytical fields have been reported, namely their use as signal amplifiers in the development of biosensors [3][5] to
  • fulfil performance criteria such as high sensitivity and low limit of detection. In this context, vesicles can be used in the construction of biosensors as supporting film to coat Au or Ag electrodes [3]. Self-assembly of nanoparticles onto organised systems combines the advantages of nanomaterials
  • inactivation and also in biosensors [12]. There are many properties that depend on the shape of the nanostructures. In this regard, there have been many studies with different ways to synthesize them [13][14][15][16][17]. For example, tips and edges located in the nanoparticles have regions of high electric
PDF
Album
Full Research Paper
Published 02 May 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • procedure might lead towards tight spatial control over the positions of the enzyme nanocarriers, which could be of high interest also for basic research on prerequisites for efficient enzymatic cooperation. Fast, sensitive and cost-saving biosensors often employ label-free read-out, in which signal
PDF
Album
Review
Published 25 Apr 2016

Bacteriorhodopsin–ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour

  • Saurav Kumar,
  • Sudeshna Bagchi,
  • Senthil Prasad,
  • Anupma Sharma,
  • Ritesh Kumar,
  • Rishemjit Kaur,
  • Jagvir Singh and
  • Amol P. Bhondekar

Beilstein J. Nanotechnol. 2016, 7, 501–510, doi:10.3762/bjnano.7.44

Graphical Abstract
  • monolayer/multilayer of thin films, biosensors, and protein-based photonic devices [7][8][9]. The application of proteins for enhancement in signal transduction has been demonstrated by a number of researchers [1][10]. In general, the major drawbacks associated with proteins are their low stability, poor
PDF
Album
Full Research Paper
Published 04 Apr 2016

Organized films

  • Maurizio Canepa and
  • Helmuth Möhwald

Beilstein J. Nanotechnol. 2016, 7, 406–408, doi:10.3762/bjnano.7.35

Graphical Abstract
  • applications. This was most notable in the fields of molecular electronics and biosensors, which were emerging in those times and are now undergoing flourishing development. The interdisciplinary character of OFs, at the fortunately ill-defined borders between physical chemistry, chemical physics, biophysics
PDF
Editorial
Published 09 Mar 2016

Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method

  • Nik J. Walch,
  • Alexei Nabok,
  • Frank Davis and
  • Séamus P. J. Higson

Beilstein J. Nanotechnol. 2016, 7, 209–219, doi:10.3762/bjnano.7.19

Graphical Abstract
  • spectral range, the deposition of graphene layers on gold progressively enhances the plasmon resonance in TIRE Ψ spectra and caused an extra phase shift in TIRE Δ spectra. This phenomenon can be explored in the future for enhancing the performance of SPR-based biosensors. A schematic diagram of the
PDF
Album
Full Research Paper
Published 08 Feb 2016

Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

  • Elena Dellacasa,
  • Li Zhao,
  • Gesheng Yang,
  • Laura Pastorino and
  • Gleb B. Sukhorukov

Beilstein J. Nanotechnol. 2016, 7, 81–90, doi:10.3762/bjnano.7.10

Graphical Abstract
  • structures for biotechnological and biomedical applications, such as biosensors and carriers for drug delivery, led researchers to extend this technique beyond multilayer structure fabrication based on electrostatic interactions [7][8][9][10][11]. Over the years, other interactions such as covalent bonding
PDF
Album
Full Research Paper
Published 21 Jan 2016

Chemiresistive/SERS dual sensor based on densely packed gold nanoparticles

  • Sanda Boca,
  • Cosmin Leordean,
  • Simion Astilean and
  • Cosmin Farcau

Beilstein J. Nanotechnol. 2015, 6, 2498–2503, doi:10.3762/bjnano.6.259

Graphical Abstract
  • necessary, e.g., by introducing molecular recognition elements, in order to improve the selectivity of the sensor. Knowledge and technology existing on chemiresistive biosensors on one side and SERS detection on the other, can be commonly exploited for developing advanced dual sensors benefiting from the
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2015

Orthogonal chemical functionalization of patterned gold on silica surfaces

  • Francisco Palazon,
  • Didier Léonard,
  • Thierry Le Mogne,
  • Francesca Zuttion,
  • Céline Chevalier,
  • Magali Phaner-Goutorbe,
  • Éliane Souteyrand,
  • Yann Chevolot and
  • Jean-Pierre Cloarec

Beilstein J. Nanotechnol. 2015, 6, 2272–2277, doi:10.3762/bjnano.6.233

Graphical Abstract
  • immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic
  • biosensors) is a major challenge. Keywords: characterization; self-assembled monolayer; surface functionalization; ToF–SIMS; XPS; Introduction The orthogonal self-assembly of different molecules onto a patterned substrate was first demonstrated in 1989 by Whitesides and co-workers [1]. Recently, especially
  • with the development of localized surface plasmon resonance (LSPR) biosensors, this topic has become a major focus [2][3][4][5][6][7][8]. Indeed, LSPR transduction is expected to yield enhanced signal as compared to classical SPR transduction. However, the enhancement of the LSPR limit of detection is
PDF
Album
Letter
Published 01 Dec 2015

Optimized design of a nanostructured SPCE-based multipurpose biosensing platform formed by ferrocene-tethered electrochemically-deposited cauliflower-shaped gold nanoparticles

  • Wicem Argoubi,
  • Maroua Saadaoui,
  • Sami Ben Aoun and
  • Noureddine Raouafi

Beilstein J. Nanotechnol. 2015, 6, 1840–1852, doi:10.3762/bjnano.6.187

Graphical Abstract
  • peroxidase (HRP) enzyme yields biosensors, which have been applied for the selective electrochemical detection of human IgG (hIgG) or H2O2 as model analytes, respectively. Parameters such as the number of sweeps, amount of charge generated from the oxidation of the electrodeposited gold, time of incubation
  • substrates using various types of conductive inks can be considered as one of the most promising routes for the development of cost-effective, disposable biosensors [4]. Electrochemical (bio)sensors are inherently endowed with several attracting features which are useful for various technological
  • concentrations of, e.g., biologically active analytes and disease-related biomarkers [9][10]. Many electrochemical biosensors use ferrocene to transduce the biological reactions into readily measurable electrical signals [11][12]. For instance, Chen and Diao developed a glucose biosensor using gold nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2015

Nonlinear optical properties of near-infrared region Ag2S quantum dots pumped by nanosecond laser pulses

  • Li-wei Liu,
  • Si-yi Hu,
  • Yin-ping Dou,
  • Tian-hang Liu,
  • Jing-quan Lin and
  • Yue Wang

Beilstein J. Nanotechnol. 2015, 6, 1781–1787, doi:10.3762/bjnano.6.182

Graphical Abstract
  • . In the last ten years, the study and development of QDs has rapidly progressed, and also influenced other research areas, such as nonlinear optics, plasmonics and biosensors. The special optical properties of QDs include good resistance to photo-bleaching, large absorption cross section, long
PDF
Album
Full Research Paper
Published 24 Aug 2015

Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications

  • Hanieh Shirazi,
  • Maryam Daneshpour,
  • Soheila Kashanian and
  • Kobra Omidfar

Beilstein J. Nanotechnol. 2015, 6, 1677–1689, doi:10.3762/bjnano.6.170

Graphical Abstract
  • various fields of application, especially the biomedical sciences and biosensors. Keywords: Au/polymer/Fe3O4 nanocomposites; Au nanoparticles; cell viability; magnetic nanoparticles; N-trimethyl chitosan; Introduction Nanotechnology is the science of the fabrication of novel materials, devices and
  • engineering, as well as the in the design of sensors and biosensors [11][12][13][14][15][16][17]. Although all nanoparticles containing a magnetic core are considered as magnetic nanoparticles, the most commonly used are iron oxide nanoparticles, which are mostly synthesized in the form of magnetite (Fe3O4
  • particularly anticipated in the fields of electrochemical sensors and biosensors, where Au nanoparticles play a fundamental role as labels or platforms for immobilization. In this respect, our results suggest that enhanced signal amplification and increased magnetic separation efficiency are likely. In
PDF
Album
Full Research Paper
Published 03 Aug 2015

Scalable, high performance, enzymatic cathodes based on nanoimprint lithography

  • Dmitry Pankratov,
  • Richard Sundberg,
  • Javier Sotres,
  • Dmitry B. Suyatin,
  • Ivan Maximov,
  • Sergey Shleev and
  • Lars Montelius

Beilstein J. Nanotechnol. 2015, 6, 1377–1384, doi:10.3762/bjnano.6.142

Graphical Abstract
  • commercially available MCO, bilirubin oxidase (BOx), which is one of the main biocatalysts exploited today to design third-generation (i.e., direct electron-transfer-based), O2 reducing biodevices (e.g., O2-sensitive biosensors [18] and biocathodes of enzymatic fuel cells [19]). Contrary to many other MCOs
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2015

The convenient preparation of stable aryl-coated zerovalent iron nanoparticles

  • Olga A. Guselnikova,
  • Andrey I. Galanov,
  • Anton K. Gutakovskii and
  • Pavel S. Postnikov

Beilstein J. Nanotechnol. 2015, 6, 1192–1198, doi:10.3762/bjnano.6.121

Graphical Abstract
  • due to their unique properties and the possibility of widespread applications [1][2]. The modification of magnetic materials may solve a number of high priority problems in medicine and pharmacology [3]. The principal biomedical applications of magnetic NPs include the design of biosensors [4
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2015

Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

  • Sini Kuriakose,
  • D. K. Avasthi and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2015, 6, 928–937, doi:10.3762/bjnano.6.96

Graphical Abstract
  • ], biosensors [22] and photocatalysts [23][24][25]. Nanocomposites consisting of nanostructures of ZnO and other metal-oxide semiconductors are being widely studied due to their improved physicochemical properties as compared to the individual counterparts. CuO, a p-type narrow band gap semiconductor, is
PDF
Album
Full Research Paper
Published 10 Apr 2015

Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells

  • Syeda Arooj,
  • Samina Nazir,
  • Akhtar Nadhman,
  • Nafees Ahmad,
  • Bakhtiar Muhammad,
  • Ishaq Ahmad,
  • Kehkashan Mazhar and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2015, 6, 570–582, doi:10.3762/bjnano.6.59

Graphical Abstract
  • antibacterial properties [12][13], are used in the cosmetics industry [14][15], and are used as nanoscale biosensors [11] and as drug carriers [16][17]. These NPs are being increasingly recognized due to their differential activity against tumor cells while being non-toxic to normal cells [18][19][20][21][22
PDF
Album
Full Research Paper
Published 26 Feb 2015

Synergic combination of the sol–gel method with dip coating for plasmonic devices

  • Cristiana Figus,
  • Maddalena Patrini,
  • Francesco Floris,
  • Lucia Fornasari,
  • Paola Pellacani,
  • Gerardo Marchesini,
  • Andrea Valsesia,
  • Flavia Artizzu,
  • Daniela Marongiu,
  • Michele Saba,
  • Franco Marabelli,
  • Andrea Mura,
  • Giovanni Bongiovanni and
  • Francesco Quochi

Beilstein J. Nanotechnol. 2015, 6, 500–507, doi:10.3762/bjnano.6.52

Graphical Abstract
  • an extended time and inducing a suitable reduction of the regeneration time of the chip. Keywords: biosensors; nanodevices; plasmonics; sol–gel; thin films; Introduction Plasmonic nanostructures have gained increasing attention for their surface plasmon resonance (SPR)-related properties, which can
PDF
Album
Full Research Paper
Published 19 Feb 2015

Hollow plasmonic antennas for broadband SERS spectroscopy

  • Gabriele C. Messina,
  • Mario Malerba,
  • Pierfrancesco Zilio,
  • Ermanno Miele,
  • Michele Dipalo,
  • Lorenzo Ferrara and
  • Francesco De Angelis

Beilstein J. Nanotechnol. 2015, 6, 492–498, doi:10.3762/bjnano.6.50

Graphical Abstract
  • large enhancement of the vibrational features both in the case of resonant excitation and out-of-resonance excitation. Such characteristics indicate that these structures are potential candidates for plasmonic enhancers in multifunctional opto-electronic biosensors. Keywords: biosensing; multiband
  • spectrum. This could be a very attractive property for the design of highly versatile biosensors suitable for SERS spectroscopy on biological systems which use the entire visible wavelength range. The broadband enhancement feature is an addition to the already known broadband absorption of such systems [23
PDF
Album
Full Research Paper
Published 18 Feb 2015

Mechanical properties of MDCK II cells exposed to gold nanorods

  • Anna Pietuch,
  • Bastian Rouven Brückner,
  • David Schneider,
  • Marco Tarantola,
  • Christina Rosman,
  • Carsten Sönnichsen and
  • Andreas Janshoff

Beilstein J. Nanotechnol. 2015, 6, 223–231, doi:10.3762/bjnano.6.21

Graphical Abstract
  • membrane rendering them prime candidates for multifunctional carriers [6][7][8]. Potential applications encompass selective drug delivery, photothermal therapy, reporters for biosensors and the use as contrast agents [5][9]. Targets can be addressed specifically by functionalization of the particle surface
  • in the context of human exposure to nanoparticles. Hence, biosensors with high sensitivity, selectivity, fast real-time readout, and non-invasiveness are desirable design criteria for screening toxicity of nanoparticles varying in size, shape, and surface functionalization. Most cytotoxicity assays
PDF
Album
Full Research Paper
Published 20 Jan 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • summarized first, then in vitro and in vivo studies of their toxicity are addressed. Finally, the investigations utilizing BNNTs in applications such as drug delivery, biomaterials preparation, biosensors, hydrogen storage, and neutron capture therapy are summarized by giving examples from the literature
PDF
Album
Review
Published 08 Jan 2015

Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

  • Christina Rosman,
  • Sebastien Pierrat,
  • Marco Tarantola,
  • David Schneider,
  • Eva Sunnick,
  • Andreas Janshoff and
  • Carsten Sönnichsen

Beilstein J. Nanotechnol. 2014, 5, 2479–2488, doi:10.3762/bjnano.5.257

Graphical Abstract
  • be controlled by synthesis conditions [2] in order to match the “optical window” of biological tissue in the wavelength region of 650–900 nm [3]. Therefore, gold nanoparticles can be used, for example, as biosensors [4][5], as delivery systems [6][7], as contrast agents in imaging [8][9], and as
PDF
Album
Supp Info
Full Research Paper
Published 24 Dec 2014

Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions

  • Cornelia Loos,
  • Tatiana Syrovets,
  • Anna Musyanovych,
  • Volker Mailänder,
  • Katharina Landfester,
  • G. Ulrich Nienhaus and
  • Thomas Simmet

Beilstein J. Nanotechnol. 2014, 5, 2403–2412, doi:10.3762/bjnano.5.250

Graphical Abstract
  • affinity, and may give us valuable clues for the rational design of nanosized medical devices. Biological effects of polystyrene nanoparticles Polystyrene nanoparticles have been used for various applications, such as biosensors [31], in photonics [32], and in self-assembling nanostructures [33
PDF
Album
Review
Published 15 Dec 2014

Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An,
  • Yani Zhang,
  • Chee How Wong and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2081–2091, doi:10.3762/bjnano.5.217

Graphical Abstract
  • -dimensional electronic materials, and their further development has been encouraged in high frequency applications [8][9], chemical sensing [10][11] and biosensing [12][13]. Recently, SWCNTs have been demonstrated as one of the best biosensors for a number of reasons: i) their diameter (several nanometers) is
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2014

Carbon nano-onions (multi-layer fullerenes): chemistry and applications

  • Juergen Bartelmess and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2014, 5, 1980–1998, doi:10.3762/bjnano.5.207

Graphical Abstract
  • that no significant cytotoxicity was observable, which renders this CNO material ideal for future biological applications. Toward the fabrication of CNO-biosensors, gold electrodes were initially decorated with a self-assembled monolayer of cysteamine on which the oxidized CNOs were deposited by an
  • imaging that the CNOs were deposited in the lysosomes of the cells. Biological sensing: In the aforementioned study of Luszczyn et al. [36], CNOs were covalently functionalized with biomolecules and studied for the first time as biosensors by using avitin–biotin interactions. The CNO served as linking
PDF
Album
Review
Published 04 Nov 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • biocompatibility properties on a case-by-case basis. Despite the debate on their biocompatibility when in solution, CNTs have been proposed as an ideal material over quite a wide range of biomedical applications; in addition to the discussed drug [51] and gene [52][53] delivery, CNTs have been used as biosensors
  • size of the nanomaterial itself [87][88][89], as well as on the presence of metal contaminants and the residues of the GO preparation method in graphene samples [90]. Biomedical applications of graphene and its derivatives range from photothermal tumour ablation therapy to biosensors, from gene therapy
  • near-infrared region as a photothermal agent for in vivo cancer treatment, while scrutinising the effects originating from different graphene sizes and coatings [97]. Several research groups have focused on graphene as biosensors. Dey et al. [98] developed an amperometric cholesterol biosensor; Tang
PDF
Album
Correction
Review
Published 23 Oct 2014

Real-time monitoring of calcium carbonate and cationic peptide deposition on carboxylate-SAM using a microfluidic SAW biosensor

  • Anna Pohl and
  • Ingrid M. Weiss

Beilstein J. Nanotechnol. 2014, 5, 1823–1835, doi:10.3762/bjnano.5.193

Graphical Abstract
  • acoustic wave biosensors to significantly expand our experimental capabilities for studying the principles underlying biomineralization in vitro. Keywords: biomineralization; calcium carbonate; love-type surface acoustic wave; poly-cationic peptide; Introduction Biomineralization is a natural process of
  • concerned [14][19]. Especially in the field of biomineralization it is therefore of major importance to quantify biomolecular interactions as a solid–liquid system with high sensitivity. Recent progress in the field of biosensors based on surface acoustic wave (SAW) technology has made it possible to
  • perform experiments with very high sensitivity in extremely small volumes of liquid media [29]. Surface acoustic wave biosensors operate with different types of waves [30]. Not all of them are useful for fluidic applications due to an enormous energy loss [31]. The propagation of the surface acoustic wave
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2014
Other Beilstein-Institut Open Science Activities