Search results

Search for "charge transport" in Full Text gives 134 result(s) in Beilstein Journal of Nanotechnology.

Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

  • Andrea Magri,
  • Pascal Friederich,
  • Bernhard Schäfer,
  • Valeria Fattori,
  • Xiangnan Sun,
  • Timo Strunk,
  • Velimir Meded,
  • Luis E. Hueso,
  • Wolfgang Wenzel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1107–1115, doi:10.3762/bjnano.6.112

Graphical Abstract
  • efficiently accept and delocalize additional electrons) suggest more robust electron charge transport properties. This discrepancy is explained by the excimer formation, whose inclusion in the multiscale simulation workflow is expected to bring the theoretical simulation and experiment into agreement
PDF
Album
Full Research Paper
Published 05 May 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
  • polysulfides in the case of lithium–sulfur or sodium–sulfur batteries, has only very recently been seriously taken into account. Viswanathan et al. suggest that Li2O2 grows only to film deposits of 5–10 nm in thickness because charge transport through the Li2O2 layer can only proceed by hole tunneling [92][93
PDF
Album
Review
Published 23 Apr 2015

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

  • Omar F. Farhat,
  • Mohd M. Halim,
  • Mat J. Abdullah,
  • Mohammed K. M. Ali and
  • Nageh K. Allam

Beilstein J. Nanotechnol. 2015, 6, 720–725, doi:10.3762/bjnano.6.73

Graphical Abstract
  • superior to polycrystalline architectures in a unique way: the decrease of the number of grain boundaries ameliorates charge-carrier transport by permitting a direct and quick charge transport pathway and thus decreases the carrier path length, which in turn decreases recombination losses. To this end
PDF
Album
Full Research Paper
Published 12 Mar 2015

Simple approach for the fabrication of PEDOT-coated Si nanowires

  • Mingxuan Zhu,
  • Marielle Eyraud,
  • Judikael Le Rouzo,
  • Nadia Ait Ahmed,
  • Florence Boulc’h,
  • Claude Alfonso,
  • Philippe Knauth and
  • François Flory

Beilstein J. Nanotechnol. 2015, 6, 640–650, doi:10.3762/bjnano.6.65

Graphical Abstract
  • surface uncovered [16]. In order to improve the junction quality, a conformal PEDOT shell should be introduced to eliminate charge transport paths parallel to the diode. Compared with the spin coating technique, the electrochemical polymerization of PEDOT provides the possibility of excellent polymer
  • negative voltage range. This is an indication that most of the shunt paths for charge transport at reverse voltages are blocked. An extremely large shunt resistance (Rsh > 1 M∙Ω∙cm2) and a very low leakage current density (Jlk, on the order of μA/cm2) could be realized with this electrochemical method. The
PDF
Album
Full Research Paper
Published 04 Mar 2015

Hybrid spin-crossover nanostructures

  • Carlos M. Quintero,
  • Gautier Félix,
  • Iurii Suleimanov,
  • José Sánchez Costa,
  • Gábor Molnár,
  • Lionel Salmon,
  • William Nicolazzi and
  • Azzedine Bousseksou

Beilstein J. Nanotechnol. 2014, 5, 2230–2239, doi:10.3762/bjnano.5.232

Graphical Abstract
  • the SCO properties and the physical properties (magnetic, photonic, charge transport, etc.) of the surrounding matter. The present review constitutes an overview of these systems including their synthesis, theoretical modelling and future possible technological applications. Indeed, a recent strategy
PDF
Album
Review
Published 25 Nov 2014

Advances in NO2 sensing with individual single-walled carbon nanotube transistors

  • Kiran Chikkadi,
  • Matthias Muoth,
  • Cosmin Roman,
  • Miroslav Haluska and
  • Christofer Hierold

Beilstein J. Nanotechnol. 2014, 5, 2179–2191, doi:10.3762/bjnano.5.227

Graphical Abstract
  • . Therefore, all the carbon atoms in the nanotube can, in principle, interact with the analyte gas, while simultaneously supporting charge transport in the device. Thus, adsorbates and electrostatic charges and dipoles close to the nanotube can greatly impact charge transport. At the same time, the carbon
PDF
Album
Review
Published 20 Nov 2014

Experimental techniques for the characterization of carbon nanoparticles – a brief overview

  • Wojciech Kempiński,
  • Szymon Łoś,
  • Mateusz Kempiński and
  • Damian Markowski

Beilstein J. Nanotechnol. 2014, 5, 1760–1766, doi:10.3762/bjnano.5.186

Graphical Abstract
  • take part in the charge transport and add to the EPR signal instead. Thus, Curie’s law must be modified with the component resulting from the Equation 1 to take into account the changing number of localized spins. This result is presented in Figure 4 [36]. Another factor greatly influencing the EPR
PDF
Album
Review
Published 13 Oct 2014

The influence of molecular mobility on the properties of networks of gold nanoparticles and organic ligands

  • Edwin J. Devid,
  • Paulo N. Martinho,
  • M. Venkata Kamalakar,
  • Úna Prendergast,
  • Christian Kübel,
  • Tibebe Lemma,
  • Jean-François Dayen,
  • Tia. E. Keyes,
  • Bernard Doudin,
  • Mario Ruben and
  • Sense Jan van der Molen

Beilstein J. Nanotechnol. 2014, 5, 1664–1674, doi:10.3762/bjnano.5.177

Graphical Abstract
  • that dynamic changes in the molecular layers effectively lower the molecular tunnel barrier for BPP-based arrays at higher temperatures. Keywords: aromatic capping ligands; gold nanoparticles; molecular charge transport; self-assembly; surface enhanced Raman spectroscopy; Introduction Inspired by
  • . The observed spatial flexibility of the thiol-anchored BPP ligands is of interest for molecule chelation purposes, as it should facilitate the envisioned complexation of Fe(II) metal ions. Conductance measurements on a multilayered Au-NP–S-BPP network Charge transport in Au-NP–S-BPP network devices
  • , i.e., the electrostatic energy needed to add an electron onto the metallic nanoparticle (here C is the total capacitance of a nanoparticle in the array and e is the electron charge). In that case, Coulomb blockade will hamper charge transport. Earlier work on alkanethiol–gold nanoparticle networks
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2014

Magnesium batteries: Current state of the art, issues and future perspectives

  • Rana Mohtadi and
  • Fuminori Mizuno

Beilstein J. Nanotechnol. 2014, 5, 1291–1311, doi:10.3762/bjnano.5.143

Graphical Abstract
PDF
Album
Review
Published 18 Aug 2014

Gas sensing with gold-decorated vertically aligned carbon nanotubes

  • Prasantha R. Mudimela,
  • Mattia Scardamaglia,
  • Oriol González-León,
  • Nicolas Reckinger,
  • Rony Snyders,
  • Eduard Llobet,
  • Carla Bittencourt and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2014, 5, 910–918, doi:10.3762/bjnano.5.104

Graphical Abstract
  • charge transport [7], unlike in randomly oriented CNT meshes. Sensors made of aligned CNTs synthesized by plasma enhanced chemical vapour deposition (PECVD), have been reported to exhibit fast and high response at room temperature and detect 10 ppb NO2 when operated at 165 °C. Although the detection of
PDF
Album
Letter
Published 26 Jun 2014

Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes

  • Jung-Ho Yun,
  • Il Ku Kim,
  • Yun Hau Ng,
  • Lianzhou Wang and
  • Rose Amal

Beilstein J. Nanotechnol. 2014, 5, 895–902, doi:10.3762/bjnano.5.102

Graphical Abstract
  • particulate films [12]. Consequently, this enhanced charge transport led to an improvement in the efficiency of light energy conversion. According to Zhu et al., as considering the charge collection efficiency between TiO2 nanoparticle-based and TNT-based DSSCs with comparable TiO2 thickness, the TNT-based
  • experimental results with the optical modeling results presents how charge generation and charge transport are associated with the unique morphological property of 1D-TNT photoanodes when enhancing the photovoltaic performance. Results and Discussion TNT-based N719 dye-sensitized solar cells Prior to
  • the excellent charge transport property of 1D-TNT structured photoanodes accompanying effective electron–hole charge separation and longer electron lifetime, which were confirmed by EIS analysis and the simulated electric field intensity. Therefore, our characterization approach employing optical
PDF
Album
Full Research Paper
Published 24 Jun 2014

Volcano plots in hydrogen electrocatalysis – uses and abuses

  • Paola Quaino,
  • Fernanda Juarez,
  • Elizabeth Santos and
  • Wolfgang Schmickler

Beilstein J. Nanotechnol. 2014, 5, 846–854, doi:10.3762/bjnano.5.96

Graphical Abstract
  • perfect oxides have shown, that often hydrogen is adsorbed as a proton, and is often incorporated into the film. WO3 is a good example for this effect [31]. (3) The experimental data are affected by the charge transport through the film, which is very difficult to correct for [32]. Therefore, for this
PDF
Album
Full Research Paper
Published 13 Jun 2014

Biomolecule-assisted synthesis of carbon nitride and sulfur-doped carbon nitride heterojunction nanosheets: An efficient heterojunction photocatalyst for photoelectrochemical applications

  • Hua Bing Tao,
  • Hong Bin Yang,
  • Jiazang Chen,
  • Jianwei Miao and
  • Bin Liu

Beilstein J. Nanotechnol. 2014, 5, 770–777, doi:10.3762/bjnano.5.89

Graphical Abstract
  • other counterparts including CN, CNS and physically mixed CN and CNS over the entire potential profile. It is worth noting that the dark current densities of the photoelectrodes follow the order of CN/CNS heterostructure > CNS > CN, indicating the best charge transport properties of CN/CNS
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2014

Fullerenes as adhesive layers for mechanical peeling of metallic, molecular and polymer thin films

  • Maria B. Wieland,
  • Anna G. Slater,
  • Barry Mangham,
  • Neil R. Champness and
  • Peter H. Beton

Beilstein J. Nanotechnol. 2014, 5, 394–401, doi:10.3762/bjnano.5.46

Graphical Abstract
  • arrays in some cases continuously covering macroscopic areas of a sample surface [29]. The scientific investigations of such polymers have provided new insights into charge transport in molecular systems [19], but many properties of potential interest, particularly those related to optical and electronic
PDF
Album
Full Research Paper
Published 02 Apr 2014

Charge and spin transport in mesoscopic superconductors

  • M. J. Wolf,
  • F. Hübler,
  • S. Kolenda and
  • D. Beckmann

Beilstein J. Nanotechnol. 2014, 5, 180–185, doi:10.3762/bjnano.5.18

Graphical Abstract
  • M. J. Wolf F. Hubler S. Kolenda D. Beckmann Karlsruher Institut für Technologie (KIT), Institut für Nanotechnologie, P.O. Box 3640, D-72021 Karlsruhe, Germany 10.3762/bjnano.5.18 Abstract Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s
  • but no spin. The quasiparticle excitations, however, may carry both charge and spin. Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature [8][9][10] and more recently also in the low-temperature
  • experiments on spin and charge transport in nanoscale superconductors at very low temperatures and high magnetic fields. We find that charge imbalance can be described surprisingly well with existing models, despite the fact that they were initially developed for experiments close to the critical temperature
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2014

In situ growth optimization in focused electron-beam induced deposition

  • Paul M. Weirich,
  • Marcel Winhold,
  • Christian H. Schwalb and
  • Michael Huth

Beilstein J. Nanotechnol. 2013, 4, 919–926, doi:10.3762/bjnano.4.103

Graphical Abstract
  • significant progress could be made in understanding the charge transport regimes in nanogranular metals [8][9][10]. In addition, by the controlled combination of two precursors it has become possible to prepare amorphous binary alloys [11][12], as well as nanogranular intermetallic compounds [13]. As the
PDF
Album
Full Research Paper
Published 17 Dec 2013

Optimization of solution-processed oligothiophene:fullerene based organic solar cells by using solvent additives

  • Gisela L. Schulz,
  • Marta Urdanpilleta,
  • Roland Fitzner,
  • Eduard Brier,
  • Elena Mena-Osteritz,
  • Egon Reinold and
  • Peter Bäuerle

Beilstein J. Nanotechnol. 2013, 4, 680–689, doi:10.3762/bjnano.4.77

Graphical Abstract
  • equation [37][38]: the expected Voc can be calculated to be 1.2 V, which is 0.11 V higher than the measured value (1.09 V). Despite the very high Voc, a moderate PCE of 2.1% was obtained. The device made from CB displayed a relatively low fill factor (0.36), which is indicative of limited charge transport
  • believed to be the increase in charge generation, which is reflected in the higher Jsc (6.5 vs 5.2 mA/cm2), and an improved charge transport and collection, as evidenced by the higher fill factor (0.41 vs 0.37) and lower saturation value (1.28 vs 1.33), respectively. The EQE spectra shown in Figure 5b
  • , and improve charge transport to the electrodes. The better photocurrent saturation values for the vacuum-deposited cells, 1.17 versus 1.28 for the solution-processed devices, indicate reduced recombination, resulting in increased charge collection. The relatively modest difference in solar cell
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2013

Preparation of electrochemically active silicon nanotubes in highly ordered arrays

  • Tobias Grünzel,
  • Young Joo Lee,
  • Karsten Kuepper and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2013, 4, 655–664, doi:10.3762/bjnano.4.73

Graphical Abstract
  • based on porous silicon [7][9]. However, no study is available to date in which the geometric parameters of this system were varied systematically in order to pinpoint the critical length scales associated with mass transport, charge transport, and mechanical relaxation. We propose an experimental
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2013

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
  • freedom. The target temperature for the equilibration was set to 400 K. The temperature was then reduced to 298 K and the simulation was continued for additional 110 ps. After that the productive QMD run was performed for 120 ps at 298 K. This time window is sufficient for studying the charge-transport
PDF
Album
Full Research Paper
Published 26 Sep 2013

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • without a coaxial layer of vanadium oxide (V2O5) as cathode and anode, respectively. Due to their unique properties (e.g., large surface area, electrical conductivity, regular pore structure, electrolyte accessibility, charge transport), they are candidates for replacing traditional electrodes. Instead of
PDF
Album
Review
Published 22 Feb 2013

Current–voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution

  • Bernd M. Briechle,
  • Youngsang Kim,
  • Philipp Ehrenreich,
  • Artur Erbe,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Ulrich Groth and
  • Elke Scheer

Beilstein J. Nanotechnol. 2012, 3, 798–808, doi:10.3762/bjnano.3.89

Graphical Abstract
  • , Germany Chemistry Department, University of Konstanz, D-78457 Konstanz, Germany 10.3762/bjnano.3.89 Abstract We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the
  • : diarylethene; mechanically controllable break-junction; molecular electronics; photoswitching; single-molecule junctions; Introduction Charge transport in single-molecule devices is actively investigated with the aim to realize functional electronic circuits [1][2][3][4], such as switches [5], transistors [4
  • small geometrical change, which makes diarylethene molecules promising building blocks for optoelectronic applications [19][20]. Since electrical measurements of diarylethene molecules started, measurements of the charge-transport properties of molecular ensembles by using large-area samples [21
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2012

The memory effect of nanoscale memristors investigated by conducting scanning probe microscopy methods

  • César Moreno,
  • Carmen Munuera,
  • Xavier Obradors and
  • Carmen Ocal

Beilstein J. Nanotechnol. 2012, 3, 722–730, doi:10.3762/bjnano.3.82

Graphical Abstract
  • bipolar switching behaviour, such as that shown in Figure 3a. The clearly asymmetric curve indicates that diverse microscopic processes govern charge transport under each polarity; the different branches are capable of being described by I–Vs of electrical circuits in which both resistors and rectifiers
PDF
Album
Full Research Paper
Published 06 Nov 2012

Revealing thermal effects in the electronic transport through irradiated atomic metal point contacts

  • Bastian Kopp,
  • Zhiwei Yi,
  • Daniel Benner,
  • Fang-Qing Xie,
  • Christian Obermair,
  • Thomas Schimmel,
  • Johannes Boneberg,
  • Paul Leiderer and
  • Elke Scheer

Beilstein J. Nanotechnol. 2012, 3, 703–711, doi:10.3762/bjnano.3.80

Graphical Abstract
  • mechanism. Yet, in general several additional effects are conceivable in experiments with illuminated electrical contacts, which may affect the characteristics of the contact. Although partly trivial, they can mask the intrinsic mechanisms of charge transport through the contact. For an unequivocal analysis
  • and interpretation of the charge transport it is therefore essential to take these phenomena into account. As an obvious example, incident photons can give rise to a local increase in temperature, resulting in thermal expansion, thermovoltage, and resistance change in the leads. The effect of thermal
  • electrochemical (Helmholtz) double layer between the Au electrodes and the surrounding electrolyte [24]. This is corroborated by the fact that signals like in Figure 2a can also be obtained when there is no direct ohmic contact between the two electrodes, meaning that any charge transport between the working
PDF
Album
Full Research Paper
Published 24 Oct 2012

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • that highlight this development in the areas of charge-transport regimes in nanogranular metals close to an insulator-to-metal transition, the use of these materials for strain- and magnetic-field sensing, and the prospect of extending FEBID to multicomponent systems, such as binary alloys and
  • independently controlled, is analyzed within a continuum model of FEBID that employs rate equations. Predictions are made for the tunability of the composition of the Co–Pt system by simply changing the dwell time of the electron beam during the writing process. The charge-transport regimes of nanogranular
  • capacitance of the grain. EC is equal to the change in electrostatic energy of the grain when one electron is added or removed. For insulating samples charge transport is suppressed at low temperatures due to this charging energy. The average level spacing δ can become larger than the charging energy only for
PDF
Album
Video
Review
Published 29 Aug 2012

Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed

  • Hongxia Wang,
  • Meinan Liu,
  • Cheng Yan and
  • John Bell

Beilstein J. Nanotechnol. 2012, 3, 378–387, doi:10.3762/bjnano.3.44

Graphical Abstract
  • -transfer and charge-transport process in DSCs can be measured by small-perturbation-based transient methods, such as electrochemical impedance spectroscopy (EIS) or intensity modulated photocurrent spectroscopy (IMPS) and intensity modulated photovoltage spectroscopy (IMVS) [13][15]. Compared to IMPS and
PDF
Album
Full Research Paper
Published 07 May 2012
Other Beilstein-Institut Open Science Activities