Search results

Search for "permeability" in Full Text gives 179 result(s) in Beilstein Journal of Nanotechnology.

Nanoporous silicon nitride-based membranes of controlled pore size, shape and areal density: Fabrication as well as electrophoretic and molecular filtering characterization

  • Axel Seidenstücker,
  • Stefan Beirle,
  • Fabian Enderle,
  • Paul Ziemann,
  • Othmar Marti and
  • Alfred Plettl

Beilstein J. Nanotechnol. 2018, 9, 1390–1398, doi:10.3762/bjnano.9.131

Graphical Abstract
  • start of 10.9 ± 0.8 nm results in uniform pore diameters at the top and bottom face of 19.1 ± 1.2 nm and 13.6 ± 1.5 nm, respectively. Electrophoretic characterization After the fabrication of nanometer-sized pores the permeability of the resulting membranes was tested. For this purpose, membranes with
  • of the resulting membranes, may deteriorate their permeability. It turned out, however, that fluorocarbon surface contaminations could be removed by annealing in ultra-high vacuum (10−8 mbar) at 500 °C for 120 min (details are given in Supporting Information File 1). For membrane C with the smallest
  • varying pore diameters are expected to be smaller than the measurement uncertainties. In accordance with these considerations, the ion transport measurements show a very high overall permeability of the nanopores. As a consequence, a small fraction of possibly blocked pores could not be resolved by the
PDF
Album
Supp Info
Full Research Paper
Published 09 May 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • . Nanosize, monodispersity, distinct shapes, selective permeability to smaller molecules, composition controllability by genome manipulation, self-assembly and polyvalence, rapid growth, and stability towards pH and temperature [125][126], are properties that make viruses a unique category among NMs [127
PDF
Album
Review
Published 03 Apr 2018

Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties

  • Rasha Ghunaim,
  • Maik Scholz,
  • Christine Damm,
  • Bernd Rellinghaus,
  • Rüdiger Klingeler,
  • Bernd Büchner,
  • Michael Mertig and
  • Silke Hampel

Beilstein J. Nanotechnol. 2018, 9, 1024–1034, doi:10.3762/bjnano.9.95

Graphical Abstract
  • magnetic storage [6][7], fuel cells [8], electromagnetic wave absorption [9], sensors for magnetic force microscopy [10] and human tumor therapy [11][12][13]. Fe–Co binary alloys are of particular interest due to their high saturation magnetization, large permeability and high magnetophoretic mobility [14
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • deactivated through interfering with cell activity (e.g., changes in cell permeability, enzyme activity and cell division). It is believed that in the history of humanity, disinfection is one of the most important achievements in the health protection [2]. Improvements in sanitation facilities and water
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Fabrication and photoactivity of ionic liquid–TiO2 structures for efficient visible-light-induced photocatalytic decomposition of organic pollutants in aqueous phase

  • Anna Gołąbiewska,
  • Marta Paszkiewicz-Gawron,
  • Aleksandra Sadzińska,
  • Wojciech Lisowski,
  • Ewelina Grabowska,
  • Adriana Zaleska-Medynska and
  • Justyna Łuczak

Beilstein J. Nanotechnol. 2018, 9, 580–590, doi:10.3762/bjnano.9.54

Graphical Abstract
  • permeability [54][55][56]. Thus, it could be expected that the higher photocatalytic activity could be achieved by using TiO2 microspheres with uniform and spherical shape. According to the DRS UV–vis spectra shown in Figure 4, the incorporation of ILs into TiO2 microspheres significantly extended the
PDF
Album
Full Research Paper
Published 14 Feb 2018

Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells

  • Liga Saulite,
  • Karlis Pleiko,
  • Ineta Popena,
  • Dominyka Dapkute,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2018, 9, 321–332, doi:10.3762/bjnano.9.32

Graphical Abstract
  • permeability glycoprotein (P-glycoprotein)-mediated excretion of QDs from stem cells has been reported in other studies [30][31][32]. In our co-culture model, QDs are likely lost from MSCs via P-glycoprotein excretion. In 3D co-culture, MSCs and cancer cells are in close spatial proximity (Figure 6A,B), thus
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • and gas permeability. IR spectroscopy In order to trace the chemical state of the BN/Ag NH surfaces, the samples before and after catalytic activity tests were characterized by IR spectroscopy. The results are presented in Figure 6. Both types of the pristine BN/Ag HNMs are characterized by the two
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Magnetic field induced orientational transitions in liquid crystals doped with carbon nanotubes

  • Danil A. Petrov,
  • Pavel K. Skokov and
  • Alexander N. Zakhlevnykh

Beilstein J. Nanotechnol. 2017, 8, 2807–2817, doi:10.3762/bjnano.8.280

Graphical Abstract
  • to the minimum of free energy Here, K11, K22 and K33 are the Frank elastic moduli; χa and are the diamagnetic susceptibility anisotropies of LC and CNTs, respectively; μ0 is the permeability of vacuum; f is the volume fraction of CNTs in the suspension; Wp is the surface density of the coupling
PDF
Album
Full Research Paper
Published 29 Dec 2017

High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

  • Alfredo J. Diaz,
  • Hanaul Noh,
  • Tobias Meier and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2069–2082, doi:10.3762/bjnano.8.207

Graphical Abstract
  • structure [9][10]. Although the mechanical properties of the nanoclay/polymer nanocomposites have not matched those of nacre [8], other interesting properties have been reported besides being lightweight and potentially transparent [11]. Gas permeability experiments have shown that the brick-and-mortar
  • structure significantly reduces diffusion of gases across it [12][13][14]. The suggested mechanism for the decreased permeability is an increased-tortuosity path for the gas, due to the presence of the nanoclay particles [14][15]. Since the nanoclay prevents oxygen from diffusing into the organic phase, it
  • permeability, fire retardancy, and excellent mechanical properties and flexibility. Conclusion We have designed an optically transparent and electron conductive nanocomposite coating based on the polymer PEDOT:PSS and the nanoclays Laponite RD and Cloisite Na+, which exhibits a brick and mortar structure. We
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2017

Development of an advanced diagnostic concept for intestinal inflammation: molecular visualisation of nitric oxide in macrophages by functional poly(lactic-co-glycolic acid) microspheres

  • Kathleen Lange,
  • Christian Lautenschläger,
  • Maria Wallert,
  • Stefan Lorkowski,
  • Andreas Stallmach and
  • Alexander Schiller

Beilstein J. Nanotechnol. 2017, 8, 1637–1641, doi:10.3762/bjnano.8.163

Graphical Abstract
  • approach is based on the epithelial barrier dysfunction of the intestine during intestinal inflammation. The intestinal barrier shows an increased permeability by disabled tight junction proteins, alterations in the thickness and composition of the mucus. Thus, particles penetrate and accumulate only into
PDF
Album
Supp Info
Letter
Published 08 Aug 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • described as “dangling bonds”) are quenched with oxygen, forming oxide-type moieties [26]. However, because the gas permeability of parylene coatings is low and the degree of polymerization is very high [26], the concentration of these structures and, therefore, their effect on electrical conduction of the
  • degradation of IDS, measured in the OFET encapsulated with Parylene C (1 μm) may be attributed to the slow penetration of water vapor and oxygen through the encapsulation layer. The decrease in the permeability of water vapor and oxygen through the bilayer encapsulation film has been attributed to the sealing
PDF
Album
Review
Published 28 Jul 2017

Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment

  • Cem Varan and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1446–1456, doi:10.3762/bjnano.8.144

Graphical Abstract
  • benefit from enhanced permeability and retention (EPR) effect thanks to their smaller size. They can also encapsulate hydrophobic drugs as their cargo to improve solubility at the target site. Consequently, nanoparticle-based drug delivery systems can protect drug activities in biological systems and
PDF
Album
Full Research Paper
Published 12 Jul 2017

Carbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation

  • Kati Erdmann,
  • Jessica Ringel,
  • Silke Hampel,
  • Manfred P. Wirth and
  • Susanne Fuessel

Beilstein J. Nanotechnol. 2017, 8, 1307–1317, doi:10.3762/bjnano.8.132

Graphical Abstract
  • the tumor site is hindered by the high interstitial fluid pressure of solid tumors [9]. In contrast, macromolecular compounds such as CNFs and CNTs can accumulate into solid tumors much easier by taking advantage of the enhanced permeability and retention effect, which is caused by the inconsistent
  • the present study the concentration of CNFs and CNTs in the combinatory treatments was rather high (50 µg/mL), but well within the range of in vitro analyses. However, due to the aforementioned enhanced permeability and retention effect of solid tumor tissue, the concentration of carbon nanomaterials
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2017

A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls

  • Carlos Angulo Barrios and
  • Víctor Canalejas-Tejero

Beilstein J. Nanotechnol. 2017, 8, 1231–1237, doi:10.3762/bjnano.8.124

Graphical Abstract
  • on conventional microelectronic fabrication processes and exploits the permeability of thin metal films to hollow-out polymer-filled metal nanocages through an oxygen-plasma process. The technique is used for fabricating arrays of cylindrical nanocages made of thin Al shells on silicon substrates
  • reactivity with the environment [1]. For most applications, wall permeability is desirable in order to facilitate material interchange with the surroundings and/or increase the active surface of these nano-objects. Thus, permeable-wall nanocontainers can be used for a variety of appealing applications, such
  • –gel chemical reactions [1][2][3][4][5]. These procedures allow the synthesis of disperse, hollow nanostructures with precise control of their physical and chemical properties, such as size, shape, material composition and structural characteristics of the shell (thickness, permeability and surface
PDF
Album
Full Research Paper
Published 08 Jun 2017

Computing the T-matrix of a scattering object with multiple plane wave illuminations

  • Martin Fruhnert,
  • Ivan Fernandez-Corbaton,
  • Vassilios Yannopapas and
  • Carsten Rockstuhl

Beilstein J. Nanotechnol. 2017, 8, 614–626, doi:10.3762/bjnano.8.66

Graphical Abstract
  • , which is characterized by the permittivity ε(ω) and the permeability μ(ω). The complex expansion coefficients anm(ω) and bnm(ω) are called scattering coefficients and the coefficients pnm(ω) and qnm(ω) are called incident coefficients. Together they contain all relevant information about the interaction
PDF
Album
Correction
Full Research Paper
Published 14 Mar 2017

Liquid permeation and chemical stability of anodic alumina membranes

  • Dmitrii I. Petukhov,
  • Dmitrii A. Buldakov,
  • Alexey A. Tishkin,
  • Alexey V. Lukashin and
  • Andrei A. Eliseev

Beilstein J. Nanotechnol. 2017, 8, 561–570, doi:10.3762/bjnano.8.60

Graphical Abstract
  • and exceptional transport characteristics. A very narrow pore size distribution, low pore tortuosity and controllable membrane porosity make AAO one of the top performers given its permeability/pore diameter ratio [1]. The synthetic procedure of AAO membranes enables significant tunability of the
  • , the water permeability of a 100 µm thick AAO membrane with a pore diameters of 170 nm attains 220 L/(m2·bar·h), which substantially exceeds that of most porous filters having the pore same size and is nearly equal to the permeability of track-etched membranes [16]. However, pure water flux through the
  • AAO membrane was found to decrease with time, indicating degradation of the membrane material, which persuaded us to conduct long-term permeability experiments. The long-term flux stability was studied for both protonic and aprotonic solvents with different viscosity. The dependence of membrane
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2017

Innovations from the “ivory tower”: Wilhelm Barthlott and the paradigm shift in surface science

  • Christoph Neinhuis

Beilstein J. Nanotechnol. 2017, 8, 394–402, doi:10.3762/bjnano.8.41

Graphical Abstract
  • ideas off the mainstream. The available space for opportunities may be explored but does not necessarily need to be. The selective permeability is another main function of borders. Fundamentals of self-cleaning in plants: a rough, hydrophobic surface (left) causes water to form spheres not adhering to
  • criteria and, as a result, the permeability of the border may change . Differences in motivation to solve problems in industry and the scientific world.
PDF
Album
Commentary
Published 08 Feb 2017

The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil®

  • Florian Antony,
  • Rainer Grießhammer,
  • Thomas Speck and
  • Olga Speck

Beilstein J. Nanotechnol. 2016, 7, 2100–2115, doi:10.3762/bjnano.7.200

Graphical Abstract
  • or radiation. In this connection, the water vapour permeability of the paint is a very important physical property. The façade paints available on the market can essentially be divided into two main categories: First, those that focus on maximum gas exchange, which might positively influence the
  • -repellency to build up a secure barrier against the penetration of moisture into deeper layers of the building. In this case sufficient gas permeability needs to be secured. Lotusan® was compared to a paint showing the same functional principle, providing a solid basis for the comparison of products. Because
  • permeability to gases such as carbon dioxide and oxygen. Against the background of the above given description of functional utility, it can be stated that both paints are highly comparable. This also applies to the overall lifetime of the paints. According to information provided by the German Federal
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2016

Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields

  • Ismael García Serrano,
  • Javier Sesé,
  • Isabel Guillamón,
  • Hermann Suderow,
  • Sebastián Vieira,
  • Manuel Ricardo Ibarra and
  • José María De Teresa

Beilstein J. Nanotechnol. 2016, 7, 1698–1708, doi:10.3762/bjnano.7.162

Graphical Abstract
  • Physical Properties Measurement System (PPMS) from Quantum Design. In the following, it is assumed that in our range of measurements the magnetic induction inside the sample, B, is equal to μ0H, with μ0 being the vacuum permeability and H being the external magnetic field. At the magnetic fields and
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2016

Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability

  • Mykola Borzenkov,
  • Anni Määttänen,
  • Petri Ihalainen,
  • Maddalena Collini,
  • Elisa Cabrini,
  • Giacomo Dacarro,
  • Piersandro Pallavicini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2016, 7, 1480–1485, doi:10.3762/bjnano.7.140

Graphical Abstract
  • requires the ability to maintain high efficiency and tunability of the NIR LSPR of the printed nanoparticles. In this study stable inks containing PEGylated gold nanostars (GNS) were fabricated and successfully inkjet-printed onto differently coated paper substrates with different porosity and permeability
  • number of printed layers, and, critically, on the permeability of the coated paper substrates. These results will promote the development of GNS-based printed platforms for local photothermal therapy. Keywords: gold nanostars; inkjet printing; localized surface plasmon resonance (LSPR); photothermal
  • the print density of GNS and the number of printed layers. We therefore reasoned that the physico-chemical nature of the coating of the paper substrates, e.g., paper permeability and the subsequent absorption of ink into to paper matrix may critically influence the obtained photothermal effect, and
PDF
Album
Supp Info
Letter
Published 19 Oct 2016

On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

  • Claudia Messerschmidt,
  • Daniel Hofmann,
  • Anja Kroeger,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2016, 7, 1296–1311, doi:10.3762/bjnano.7.121

Graphical Abstract
  • increased membrane permeability are summed up under the term “oncosis” as a form of cell death in contrast to apoptosis [36]. Its mechanism is thought to be based on a malfunction of the ionic pumps of the plasma membrane that can be evoked by ischemia or toxic agents interfering with ATP generation or
  • increasing the permeability of the plasma membrane. The accumulation of calcium taking the form of insoluble hydroxyapatite (Ca phosphate) inside mitochondria during a necrotic process is a well-known and documented phenomenon during this process [37][38]. A lot of data concerning cytotoxicity of
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2016

Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels

  • Yue Zhang and
  • Wan-Xi Yang

Beilstein J. Nanotechnol. 2016, 7, 675–684, doi:10.3762/bjnano.7.60

Graphical Abstract
  • could affect the structure of claudins and then influence its function in the tight junction. These factors are: (1) phosphorylation and (2) oxidative stress. Tyrosine phosphorylation of claudin-5 caused by the exposure of the endothelium to TGF-β1 is associated with a paracellular permeability of the
  • claudin-4 and claudin-8 increased in the kidney [61]. The oxidative stress induced by H2O2 in gastric epithelial cells also shows some association with decreased amounts of claudin-4 and claudin-7, and an increased permeability of the tight junction for dextran [62]. Occludins Occludins are a family of
  • junction barrier. The extracellular loops could regulate the permeability of the junction barrier. The expression of occludins has been found in arterial and venous endothelial cells [63]. The regulation of the barrier function based through occludins in endothelial cells can be divided into three parts
PDF
Album
Review
Published 06 May 2016

Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

  • Elena Dellacasa,
  • Li Zhao,
  • Gesheng Yang,
  • Laura Pastorino and
  • Gleb B. Sukhorukov

Beilstein J. Nanotechnol. 2016, 7, 81–90, doi:10.3762/bjnano.7.10

Graphical Abstract
  • promising drug delivery carriers for biomedical applications. The combination of the physical and mechanical properties of such materials could make it possible to modify characteristic features, such as surface morphology, in order to modulate important delivery factors, like permeability and release rate
PDF
Album
Full Research Paper
Published 21 Jan 2016

Calculations of helium separation via uniform pores of stanene-based membranes

  • Guoping Gao,
  • Yan Jiao,
  • Yalong Jiao,
  • Fengxian Ma,
  • Liangzhi Kou and
  • Aijun Du

Beilstein J. Nanotechnol. 2015, 6, 2470–2476, doi:10.3762/bjnano.6.256

Graphical Abstract
  • density functional theory calculations. To increase the permeability of noble gases through pristine 2D Sn at room temperature (298 K), two practical strategies (i.e., the application of strain and functionalization) are proposed. With their high concentration of large pores, 2D Sn-based membrane
  • membrane to separate helium is therefore highly desired. In recent years, various two-dimensional materials have been developed [5][6] and are widely used as membranes for gas separation [7][8][9][10]. The pore size is the main determinant of a membrane with high permeability and selectivity for helium
  • , Ne and Ar passing through the 2D Sn are 0.75, 1.39 and 3.09 eV, respectively. Clearly, the selectivity is high, but the penetration barrier for He through pristine 2D Sn is quite high, indicating a low permeability at room temperature. Since the pore size is critical for gas penetration, a small
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2015

Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles

  • Dulce G. Romero-Urbina,
  • Humberto H. Lara,
  • J. Jesús Velázquez-Salazar,
  • M. Josefina Arellano-Jiménez,
  • Eduardo Larios,
  • Anand Srinivasan,
  • Jose L. Lopez-Ribot and
  • Miguel José Yacamán

Beilstein J. Nanotechnol. 2015, 6, 2396–2405, doi:10.3762/bjnano.6.246

Graphical Abstract
  • polyanionic backbones of teichoic acids and the related cell wall glycopolymers of bacteria as a first target, consequently stressing the structure and permeability of the cell wall. This hypothesis provides a major mechanism to explain the antibacterial effects of silver nanoparticles on Staphylococcus
  • permeability [38]. After penetrating the cell membrane, AgNPs can also alter sulfur-containing amino acids and phosphorus (a main constituent of DNA), inhibiting replication via attaching to the bacterial ribosome [39][40]. The proteomic signatures of AgNP-treated E. coli demonstrated an accumulation of
  • , leading to structural strain in and permeability of the bacterial cell wall. This finding provides a major mechanism to explain the antibacterial properties of silver nanoparticles on Staphylococcus aureus. Results and Discussion Characterization of AgNPs TEM images of silver nanoparticles (Figure 1a
PDF
Album
Full Research Paper
Published 15 Dec 2015
Other Beilstein-Institut Open Science Activities