Search results

Search for "dispersion" in Full Text gives 685 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • during deformation. Other materials of interest for nuclear reactor design that have been the subject of HIM irradiation studies include silicon carbide grains in a pyrolytic carbon matrix [79], α-LiAlO2 pellets [80], tristructural-isotropic fuel particles [81], oxide dispersion-strengthened steels [82
PDF
Album
Review
Published 02 Jul 2021

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • using the Beer–Lambert equation: To investigate the effect of the number of coatings on the transparency of the PET film, a range of film samples was prepared with different AgNW ink dispersion volumes (0.25, 0.5, 0.6, and 0.7 mL) and characterized as dispersion volume per unit area (V/A), where A
  • Lorentzian peaks. (d) Transmittance-vs-wavelength plot of AgNW-coated PET films with different densities (corresponding to the quantity of AgNW-based dispersion ink, i.e., 0.25, 0.5, 0.6, and 0.7 mL per unit area A of the film of 5 × 5 cm2) and the inset shows the transmittance-vs-sheet resistance plot of
PDF
Album
Full Research Paper
Published 01 Jul 2021

Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or uniformity of primary importance?

  • Kirill O. Paperzh,
  • Anastasia A. Alekseenko,
  • Vadim A. Volochaev,
  • Ilya V. Pankov,
  • Olga A. Safronenko and
  • Vladimir E. Guterman

Beilstein J. Nanotechnol. 2021, 12, 593–606, doi:10.3762/bjnano.12.49

Graphical Abstract
  • multistage oxygen electroreduction reaction. When comparing platinum catalysts based on the same carbon support, differences in their electrochemical behavior are determined by the difference in the composition (Pt loading in Pt/C), structure (shape and size of the platinum NPs, dispersion of their size, and
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021

The preparation temperature influences the physicochemical nature and activity of nanoceria

  • Robert A. Yokel,
  • Wendel Wohlleben,
  • Johannes Georg Keller,
  • Matthew L. Hancock,
  • Jason M. Unrine,
  • D. Allan Butterfield and
  • Eric A. Grulke

Beilstein J. Nanotechnol. 2021, 12, 525–540, doi:10.3762/bjnano.12.43

Graphical Abstract
  • characterizations. Transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) were conducted of NM-212 dispersed in DI water, sonicated for 10 min in a bath, and captured on 300 mesh lacey carbon copper grids dipped into the dispersion for
  • the exposure to partially dissolved nanoceria may be due to the increased surface content of Ce3+ providing antioxidant potential. After dialysis in water, the partially dissolved nanoceria rapidly precipitates from the dispersion, presumably due to the loss of surface citrate and reduced surface
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • Raman scattering (SERS) effect. In this work, we show the SERS effect for water molecules in the dispersion of silver nanoparticles (AgNPs) without any external electrical field. An enhancement factor was estimated to be (4.8 ± 0.8) × 106 for an excitation wavelength of 514.5 nm and for AgNPs with an
  • , spontaneous and stimulated Raman surface enhancement of the signal of liquid water in an aqueous dispersion of silver nanoparticles [35]. High enhancement factors (in the magnitude of 106) were obtained for the results from both techniques. In this work, further investigations on the SERS effect for water
  • species in the dispersion (e.g., citrate, sodium, potassium, bromide – only in the AgNPs yellow sample) because ionic additives result in the decrease of the low frequency component around 3200 cm−1 due to their destructive impact on the hydrogen bond network in liquid water [17]. Moreover, the observed
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

Rapid controlled synthesis of gold–platinum nanorods with excellent photothermal properties under 808 nm excitation

  • Jialin Wang,
  • Qianqian Duan,
  • Min Yang,
  • Boye Zhang,
  • Li Guo,
  • Pengcui Li,
  • Wendong Zhang and
  • Shengbo Sang

Beilstein J. Nanotechnol. 2021, 12, 462–472, doi:10.3762/bjnano.12.37

Graphical Abstract
  • there was no excess CTAB and Ag+ in the AuNRs solution. AuNRs with uniform particle size and good dispersion were obtained. Platinum coating of AuNRs Using a slightly modified experimental method of Grzelczak et al. [27], Pt was deposited on the tips of the AuNRs in the presence of Ag+. The cleaned
PDF
Album
Full Research Paper
Published 17 May 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • dispersion) as the incident light and does not depend on the angle (Rayleigh scattering). However, when the particle size is greater than 63 nm, then the Rayleigh dispersion is no longer valid and it is replaced by the Mie anisotropic dispersion theory, in which the scattered light energy is different from
  • the incident light energy (inelastic dispersion) and is dependent on the angle [153]. Data referring to the dispersing medium (e.g., refractive index and viscosity) and the dispersed nanoparticle (e.g., refractive index and absorption), when it comes to nanoparticles ≤63 nm, are not required by the
  • complementary way, the size, distribution, shape heterogeneity, morphology, dispersion, and aggregation can be directly evaluated via TEM in which the high spatial resolution facilitates the investigation of the electronic structure and chemical composition [156]. However, the disadvantages other than the
PDF
Album
Supp Info
Review
Published 14 May 2021

Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene

  • Zhao Liu,
  • Antoine Hinaut,
  • Stefan Peeters,
  • Sebastian Scherb,
  • Ernst Meyer,
  • Maria Clelia Righi and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2021, 12, 432–439, doi:10.3762/bjnano.12.35

Graphical Abstract
  • occupation of the electronic states of the metal around the Fermi energy. A 12 × 12 × 12 K-point grid was used to sample the Brillouin zone of the iridium bulk and the K-point grid was proportionally resized for all the following calculations. We chose not to add any dispersion correction, consistently with
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
PDF
Album
Review
Published 29 Apr 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • ). The system is equipped with an X-ray source and an EDX unit with elementary energy dispersion spectroscopy (EDS). These analyses employ different magnifications depending on the quality of the thin films and the structure of their surface. Using cross-section imaging and a magnification of 20000×, it
  • transmission in the visible range decreases and the porosity at the film surface increases, which is justified by the lack of applied heat treatment. The dispersion of the refractive index for the investigated samples shows a normal dispersion in the considered spectral range (Figure 11). The plots indicate
  • energy of the incident photons for (a) SiO2 and (b) ZnO samples with different thickness values. Refractive index dependence on the wavelength (dispersion) for (a) SiO2 and (b) ZnO thin films. Photon energy dependence of the (a) real and (b) imaginary parts of permittivity for SiO2 (i) and ZnO (ii) thin
PDF
Album
Full Research Paper
Published 19 Apr 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • [42]. With the addition of Ag nanoparticles to a dispersion of SnO2/rGO, the working temperature was dropped from 55 °C to room temperature in the gas sensing of NO2 [43]. (For further examples and comparison with other gas sensors see Table S1 in Supporting Information File 1.) The ternary Ni@rGO/WO3
  • mg, 0.178 mmol) and rGO (10 mg) were suspended for 2 h in the dried and deoxygenated IL (2 g [BMIm][NTf2]) before microwave decomposition (230 °C, 10 min, 50 W) to obtain a dispersion of 0.5 wt % of Ni nanoparticles on rGO in ionic liquid. Preparation of WO3 nanopowder Tungsten oxide nanopowder was
  • precipitated with acetonitrile from the nanoparticle/ionic liquid dispersion and washed several times with acetonitrile. P-XRD patterns were recorded for 1 h (2θ = 5–100°). Atomic absorption spectroscopy, AAS for metal analysis was performed on a PerkinElmer PinAAcle 900T, equipped with a flame furnace. Flame
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Doxorubicin-loaded gold nanorods: a multifunctional chemo-photothermal nanoplatform for cancer management

  • Uzma Azeem Awan,
  • Abida Raza,
  • Shaukat Ali,
  • Rida Fatima Saeed and
  • Nosheen Akhtar

Beilstein J. Nanotechnol. 2021, 12, 295–303, doi:10.3762/bjnano.12.24

Graphical Abstract
  • their biocompatibility and dispersion at physiological pH values. The positive CTAB layer on the GNR surface facilitates electrostatic adsorption of anionic compounds, such as poly(sodium 4-styrenesulfonate) (PSS), which ultimately facilitates electrostatic interaction with cationic anticancerous drugs
  • -dispersion. A CTAB bilayer remained non-covalently bound onto the GNRs surface to maintain the stability of the final product. The longitudinal localized plasmon resonance (LSPR) and the transverse plasmon resonance (TSPR) of the prepared GNRs were found to be 780 and 526 nm, respectively. TEM images display
  • -dispersion). A negative zeta potential of −30 ± 0.3 mV was measured after successful coating of the GNR surfaces with PSS. The positive zeta potential (40.3 ± 0.6 mV) of DOX-PSS-GNRs, due to the positive charge of DOX, confirmed the chemistry changes to the GNR surfaces (Figure 1d). Our results revealed a
PDF
Album
Full Research Paper
Published 31 Mar 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • electronic properties were obtained by employing PBE exchange–correlation functional [32] with the D3(BJ) dispersion correction [33][34][35], the valence triple-zeta polarized (TZP) basis sets composed of Slater-type and numerical orbitals, and scalar zero-order regular approximation (ZORA) [36]. STM images
PDF
Album
Full Research Paper
Published 16 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • distribution of the AgNPs is controlled by the strength of the reducing agent [152]. It was previously observed that hydrazine hydrate (N2H4·H2O) can yield smaller AgNPs with a higher degree of dispersion compared to stronger reductants such as sodium borohydride (NaBH4) [240]. Singha et al. [152] synthesized
PDF
Album
Review
Published 25 Jan 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • that even a thin silica coating shell of <2 nm or of 5 nm can already reduce the luminescence quenching of UCNPs in an aqueous dispersion [19]. Besides, several studies revealed that silica-coated UCNPs have a low toxicity in vitro and in vivo compared with other nanoparticles [7][11][39]. Amorphous
  • Table 1. The dispersion behavior and changes in the surface charge of the samples in various media (ethanol, water, and Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% glutamine, 1% fungizone, and 1% penicillin) were studied by conducting DLS and ELS
  • :Yb,Er UCNPs were synthesized from the corresponding lanthanide oleates [78][79] according to a modified procedure from Na et al. [47], which is described in detail in [38]. Growth of silica shells For silica shells (thickness = 7 ± 1 nm), a dispersion of UCNPs (diameter = 33 ± 2 nm; c = 3 g/L) in
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • ) bright-field and dark-field images were acquired at 80 kV. MnFe2O4 nanoparticles and MnFe2O4/MWCNTs samples were dispersed in absolute ethanol and sonicated for 15 min to obtain a homogenous dispersion. Then, the supernatant was micropipetted onto a TEM grid and dried at room temperature (approx. 300 K
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020

Kondo effects in small-bandgap carbon nanotube quantum dots

  • Patryk Florków,
  • Damian Krychowski and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2020, 11, 1873–1890, doi:10.3762/bjnano.11.169

Graphical Abstract
  • ][46][47], other perturbations such as axial strain or twists can shift the dispersion cones in CNTs and open the bandgap [44][48][49][50]. Unlike the quantization bandgaps, which depend on the inverse of the diameter, these narrow perturbation gaps are inversely proportional to the square of the
  • diameter and depend on the chiral angle. Small gaps are reflected in nonlinear dispersion curves and consequent drastic changes of orbital effects induced by magnetic fields. The behavior in magnetic fields is distinctly different than in wide-bandgap nanotubes. The field dependencies are determined not
PDF
Album
Full Research Paper
Published 23 Dec 2020

PEG/PEI-functionalized single-walled carbon nanotubes as delivery carriers for doxorubicin: synthesis, characterization, and in vitro evaluation

  • Shuoye Yang,
  • Zhenwei Wang,
  • Yahong Ping,
  • Yuying Miao,
  • Yongmei Xiao,
  • Lingbo Qu,
  • Lu Zhang,
  • Yuansen Hu and
  • Jinshui Wang

Beilstein J. Nanotechnol. 2020, 11, 1728–1741, doi:10.3762/bjnano.11.155

Graphical Abstract
  • enhance the dispersion of particles by electrostatic repulsion [25][30]. Cellular entry and uptake of these carriers can be considerably enhanced by cationic modification and passive drug delivery to a tumor site due to high membrane binding avidity can be achieved. In this study, SWCNTs conjugated with
  • PEG and polyethylenimine (PEI), which contains amino groups, were synthesized (CNTs-PEG-PEI). The length of the SWCNTs was first shortened by ultrasonic scission in different strong acid solutions for improving the dispersion in water. Afterwards, PEG and PEI were grafted onto the CNTs. This
  • bundle of inhomogeneous aggregates consisting of many tubes (Figure 2A, Figure 3A). The length and dispersion state of raw and of acid-treated CNTs are quite different. After acid treatment, short CNTs exhibit a smaller tube length and a tubular structure with a hollow lumen, which is beneficial for the
PDF
Album
Full Research Paper
Published 13 Nov 2020

Piezoelectric sensor based on graphene-doped PVDF nanofibers for sign language translation

  • Shuai Yang,
  • Xiaojing Cui,
  • Rui Guo,
  • Zhiyi Zhang,
  • Shengbo Sang and
  • Hulin Zhang

Beilstein J. Nanotechnol. 2020, 11, 1655–1662, doi:10.3762/bjnano.11.148

Graphical Abstract
  • Shenzhen Oss Corporation. Electrospinning process: First, GR is added to DMF and ultrasonically dispersed for 10 min. The dispersion is then heated to 60 °C. PVDF powder (18 wt %) is added under continuous heating and stirring for 6 h to obtain the spinning solution. The prepared solution is filled into a
PDF
Album
Full Research Paper
Published 02 Nov 2020

PTCDA adsorption on CaF2 thin films

  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1615–1622, doi:10.3762/bjnano.11.144

Graphical Abstract
  • calculations were chosen [33]. The MOLOPT short-range basis sets of double-ζ quality [34][35], mixed Gaussian and plane waves, GTH potentials [36], the PBE GGA functional [37], the Γ point sampling, the Grimme DFT-D3 dispersion correction [38], and a basis-set superposition-error corrected calculation of the
PDF
Album
Full Research Paper
Published 26 Oct 2020

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • found that in class Ox structures, 80% of the binding energy is due to dispersion whereas in class Hy structures the binding energy is purely dispersive. The structural changes in the relaxation were analyzed by comparing the location and orientation of the molecule before and after the relaxation. We
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • for 90 s. Also, a constant stirring was maintained throughout the degradation of MP with Cu2O NPs. Table 1 summarizes the dispersion conditions for the Cu2O NPs of different size. The concentration of Cu2O was calculated by diving the amount of substance of Cu2O by the volume of the dispersion and
  • (bright red powder). The colored powders can be seen in Figure 2, as well as their color in aqueous dispersion. It is important to mention that there is no evidence in XRD for the presence of CuO or CuCO3, although these compouds are observed in XPS. Figure 3a shows the HRTEM image of a typical Cu2O
  • passivation of the Cu2O surface because the degradation of methyl parathion does not occur when CuO is used instead of Cu2O in the dispersion medium. Second, CuO could play an important role in the degradation mechanism by anchoring MP molecules on the surface of Cu2O through a coordinated bond between Cu2
PDF
Album
Full Research Paper
Published 12 Oct 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • -PAW general gradient approximation [33]. To account for dispersion forces the zero damping DFT-D3 correction of Grimme et al. was used [34]. Slabs were constructed from two layers of iridium and one or two bilayers of cobalt oxide. For the iridium lattice the relaxed DFT-D3 parameter (a = 3.835 Å) was
  • phenylporpyhrin (Co-DPP, 1) and a cyano-functionalized, non-metalated phenylporpyhrin (2H-TCNPP, 2) on cobalt oxide CoO(111) films in the ultrathin limit of one and two bilayer thickness. It is found that the molecule–substrate interaction decreases with increasing cobalt oxide thickness. Nevertheless, dispersion
PDF
Album
Full Research Paper
Published 05 Oct 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • into an independent field of science [2]. This shows that understanding wetting phenomena is crucial for a variety of industrial processes and research fields. In microtechnology, the dispersion of organic photoresists on substrates is indispensable for lithographic top-down microstructuring, yielding
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • π-stacked organic multilayer thin films [101][102][103]. The shift to higher BE could, in part, be attributed to the screening effect [50], and the broadening could be ascribed to the intermolecular band dispersion [18]. The multilayer structure of F4PEN on Ag(111) is unknown, but the comparison of
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020
Other Beilstein-Institut Open Science Activities