Search results

Search for "nanoscale" in Full Text gives 892 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • the need to use a comprehensive approach in theoretical studies, since the behavior of different phases is often described by different models or state equations [4]. Another reason is that phase transformation mechanisms originate at the nanoscale and atomic levels [5][6], where observation and
  • of spintronics. Modern computing devices face a number of difficulties during production, including those related to arrangement of nanoscale computing elements on integrated circuits and their subsequent cooling during operation [17][18]. Problems related to excessive heat dissipation and
  • nanomaterial is proposed. This model reflects the response of an external magnetic field on the behavior of individual atoms, and considers the internal structure and features of structural defects at the nanoscale when calculating the macroscopic magnetic characteristics of a material. The spatial
PDF
Album
Full Research Paper
Published 04 Jan 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • makes them ideal candidates for magnetic-assisted targeted drug delivery [12]. Nanoscale magnetite can be obtained through well-known synthesis routes, such as hydrothermal synthesis, thermal decomposition, or co-precipitation [10][11]. Each of these synthetic approaches has certain advantages and
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Observation of collective excitation of surface plasmon resonances in large Josephson junction arrays

  • Roger Cattaneo,
  • Mikhail A. Galin and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2022, 13, 1578–1588, doi:10.3762/bjnano.13.132

Graphical Abstract
  • interaction via shared electromagnetic fields and currents [26]. For conventional overlap JJs the scale of such interaction is short (nanoscale) because it is limited by the corresponding screening lengths in superconducting electrodes [27]. However, for planar JJs the direct interaction can be of long range
  • consists of a log-periodic microwave antenna [39] with a broad frequency range of ca. 15–700 GHz. In the center, there is a nanoscale JJ sensor, shown in Figure 6b. The detector is made of a Nb film (70 nm thick), using a fabrication technique similar to that described in [28]. The antenna is patterned
  • characteristics from (a). The peak represents the resonant step. It reduces with decreasing N and is not visible for N = 106 (lower panel) below the threshold number of JJs. (a) Optical image of a superconducting detector with a log-periodic microwave antenna. (b) SEM image of a nanoscale sensor junction (false
PDF
Album
Full Research Paper
Published 28 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • reactions. As a wide-bandgap (ca. 3.2 eV) semiconductor, TiO2 is a promising photocatalyst for degrading a massive range of high-molecular-weight organic pollutants under UV radiation [1]. Because of high specific surface, nanoscale TiO2 as grains or tubes can absorb UV light more substantially than
PDF
Album
Full Research Paper
Published 14 Dec 2022

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • , filtered, and washed. Subsequently, the precipitate was dried in an oven at 80 °C for 24 h and then ground and calcined at 900 °C for 2 h. The nanoscale crystallite size of the obtained HAP was about 62 nm. The HAG powder was obtained using Ca(NO3)2·4H2O and P2O5 (Merck) as precursors and ethanol as
PDF
Full Research Paper
Published 12 Dec 2022

Frequency-dependent nanomechanical profiling for medical diagnosis

  • Santiago D. Solares and
  • Alexander X. Cartagena-Rivera

Beilstein J. Nanotechnol. 2022, 13, 1483–1489, doi:10.3762/bjnano.13.122

Graphical Abstract
  • Bioengineering, National Institutes of Health, Bethesda, Maryland, USA 10.3762/bjnano.13.122 Abstract Atomic force microscopy (AFM), developed in the early 1980s, has become a powerful characterization tool in micro- and nanoscale science. In the early 1990s, its relevance within biology and medicine research
  • -established and widely used technique for fundamental micro- and nanoscale research, especially concerning topographical characterization and general force measurements [1][2][3][4][5]. However, advanced mechanical property analysis is not yet widely used for broad-impact applications. In fact, while some
  • body through small insertions. It is also worth mentioning that the AFM measurement principle does not need to be limited to the use of microscale or nanoscale probes. In fact, the mathematics of the viscoelastic contact problem between a probe of known geometry (e.g., a sphere) and a flat surface [15
PDF
Album
Perspective
Published 09 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • near-infrared (NIR) absorption [2]. Various gold nanoscale platforms, including nanostars, nanorods, nanospheres, nanoshells, and nanocages, have been designed as PTAs for PTT. Gold nanorods (ca. 50 nm), nanoshells (ca. 130 nm), and nanoparticles with large sizes (>50 nm) are suitable for PTT because
PDF
Album
Full Research Paper
Published 02 Dec 2022

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • studied areas of research, including the thermospin [59][60] and thermoelectric [61][62][63][64][65][66] effects, spin and heat valves [67][68][69][70][71][72][73][74][75], as well as nanoscale refrigerators [76][77][78]. Presently, the DOS structure at the free edge of a normal metal layer in NS bilayers
PDF
Album
Full Research Paper
Published 01 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • DCX solution, the NP formulations exhibited considerably higher antiproliferative activity. This was due to the increased uptake of the nanoscale particles by the cells. In general, similar results and high anticancer activity are seen in nanoscale drug delivery systems. The higher cytotoxicity is
PDF
Album
Full Research Paper
Published 23 Nov 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, S7, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium CNR-ITAE, Istituto di Tecnologie Avanzate per l’Energia, 98126, Messina, Italy 10.3762/bjnano.13.112 Abstract Advanced nanoscale antimicrobials, originated from the
  • -potential positive values (i.e., +25 and +21.3 mV, respectively). A single population of nanoscale objects with an average hydrodynamic diameter (DH) of 48 nm was detected for nanoGS, whereas two populations with a DH of 47 nm (main population) and 415 nm (minor population) were observed for nanoGSP
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • applications [62]. A very good micro-/nanoscale hierarchical Bi7O9I3/NTC photocatalyst was created in a one-step, easy, and environmentally friendly way by Hou et al., who used an in situ ion exchange–recrystallization approach [63]. The used buffer provided a relatively stable environment for producing
  • both the surface and the inside. When exposed to visible light, Bi7O9I3/NTC displayed higher photocatalytic activity owing to the synergistic effect of the micro-/nanoscale hierarchical structure, low iodine content, and well-contacted interface. 93.5% methyl orange (MO) and 96.6% RhB were eliminated
  • the one that is most often used to produce nanomaterials. This is because it is easy to implement and allows for a complete control over the shape and size of the nanoparticles. Enhancement techniques The characteristics of a semiconductor photocatalyst alter as its size is reduced to the nanoscale
PDF
Album
Review
Published 11 Nov 2022

Bending and punching characteristics of aluminum sheets using the quasi-continuum method

  • Man-Ping Chang,
  • Shang-Jui Lin and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2022, 13, 1303–1315, doi:10.3762/bjnano.13.108

Graphical Abstract
  • -cutting [13][14], and nano-punching [15]. These techniques achieve high precision at the nano- and submicron scale surfaces and three-dimensional structures [16][17]. Thus, the removal methods of nanoscale materials have become more important, such as the nano-cutting and nano-punching processes, to
  • , since it is very challenging to experimentally control every parameter in the nanoscale, the atomistic computational simulation methods are often used. The most commonly used simulation method is molecular dynamics (MD), which has been conducted to investigate many nanoscale processes [22][23]. Although
  • the MD simulation can be effectively applied to simulations at the nanoscale, it still has limitations [14]. Therefore, in recent years, the multiscale simulation approach, which combines atomistic and continuum simulations, has received more and more attention [24][25][26][27][28][29][30][31][32
PDF
Album
Full Research Paper
Published 10 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • these electrical properties with the facile synthesis of one-dimensional nanostructures may bring potential applications of this material in nanoscale optoelectronic integrated devices. However, only a few works have been dedicated to studying the electrical transport in Te-based one-dimensional
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • minimum radius of curvature of 3 nm with different applied bias pressures. The resulting gold nanowire probes are chemically inert and have a high lateral resolution. Such gold-functionalized tips can be applied to various spectroscopic and imaging techniques with nanoscale resolution, such as tip
  • -enhanced Raman spectroscopy and fluorescence microscopy. They can open new avenues for characterizing nano-objects and make it possible to study chemical and physical phenomena occurring at the nanoscale. Following the preparation and application of monometallic nanowire probes, Fang et al. [36] proposed a
  • and conductive materials at the nanoscale. Slattery et al. [46] describe the use of Pt/Ir conductive tips modified with single-walled carbon nanotubes (SWCNTs), a type of tip suitable for use in conductive imaging mode with high-sensitivity current acquisition AFM, which can also be applied to worn
PDF
Album
Review
Published 03 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • , and the tetrahedral geometry of atomic packing in many nanoscale crystals [108][109][110]. The chiral inorganic nanostructures thus may create an asymmetric environment for enantiomers. As inorganic materials possess higher stability and might be suitable for different types of enantiomers, they are
  • between the interaction of the amino acid residues of insulin and the O− and OH2+ groups on TiO2. The helical arrangement of the nanoscale lattice planes of TiO2 in the R-surface may provide a right-handed helical structure, leading to strong interaction with the insulin monomer. The R-surface thus can
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • from the perspective of different material classifications and to provide guidance for future work in the field of MEGs. The effects of various parameters and structural designs on the output power, recent important literature and works, the mechanism of liquid–solid interactions at the nanoscale, and
  • nanoparticles, nanowires, and nanosheets. In the construction of devices, nanomaterial units are stacked in thin layers or blocks, and gaps are formed between the units, allowing for the formation of nanoscale networks in the stacked regions. When the nanoparticles, nanowires, or nanosheets are stacked in a non
  • -directional selective manner, they form a randomly oriented nanoscale network structure with high surface area, which is convenient for fabrication and beneficial for MEGs. There are various methods to fabricate nanoarchitectonics, including but not limited to electrostatic spinning, lyophilization
PDF
Album
Review
Published 25 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • ][71]. Unfortunately, it has to be noticed that most technological solutions on the nanoscale are only promising at the laboratory stage. The transfer of such technologies to an industrial scale is often complicated and causes many difficulties [72][73][74]. Ophthalmic drugs can be also administered in
PDF
Album
Review
Published 24 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • cells [12][13]. Many studies have proven the antibacterial effect of ZnO [14][15] and also that nanoscale ZnO has a more effective antibacterial activity than that of large ZnO [12][16]. Various approaches for synthesizing nanosized materials have been investigated. Among these approaches, chemical and
PDF
Album
Full Research Paper
Published 07 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • and were investigated to be used as a nanoscale thermometer for determining the intracellular temperature [16]. Numerous research groups have been actively examining co-doped N,S-CDs. Because the sulfur atom can supply energy or emissive trap states for photostimulated electron capture, which alters
  • future applications in other disciplines [107]. Atchudan et al. reported a hydrothermal synthesis technique that yields CDs from Morus nigra (black mulberry) fruit juice [81]. This low-cost synthesis approach provides an effective, robust, and eco-friendly nanoscale sensor for the measurement of Fe3
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • oxide, zinc oxide, carbon nanotubes, graphene oxide, and biosilica was developed to improve bone scaffolds for better bone tissue repair and regeneration [11]. In tissue engineering applications, nanoscale topological characteristics influence cell adhesion, survival, proliferation, and differentiation
  • . The rough surface of the materials at the nanoscale helps cellular peptide adhesion for better stem cell growth and differentiation [12][13]. Nanomaterials have several advantages such as high surface area, increased mechanical strength, and induction of several important genes for bone tissue repair
  • complex and their asymmetric matrix is constituted of basic components hierarchically organized into distinct structural layers at macro- and nanoscale levels. Cortical (compact) and cancellous (trabecular) bones are two kinds of bone classification based on their macrostructure. A femur is a long bone
PDF
Review
Published 29 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • electrocatalysts [14][18][19]. Oxophilicity, agglomeration, and poor chemical stability of Ag require the amalgamation of Ag with other metals for a better optical and catalytic activity [20]. Chen et al. synthesised Ag nanoscale alloys containing metals such as copper, cobalt, iron, and indium via pulse film
  • atomic-level manipulation using established materials chemistry concepts towards the assembly of functional nanoarchitectonics [25][26][27]. The assembly of nanoscale objects through combination and in situ growth routes, leading to high-performance nanoarchitectonics, is an interesting strategy. An
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • liquid environments whilst needing the smallest AC bias for operation. Keywords: AFM; atomic force microscopy; closed loop; Kelvin probe force microscope; KPFM; open loop; performance; signal-to-noise ratio; Introduction Atomic force microscopy (AFM) is an enabling technique for the nanoscale mapping
  • of topography and surface properties of interfaces in a wide range of environments [1]. Kelvin probe force microscopy (KPFM) utilizes the application of a bias and a conductive probe to map the local electrical properties of an interface at the nanoscale [2], allowing for the determination of the
PDF
Full Research Paper
Published 12 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • composition, surface structuring on the micro-/nanoscale, and the introduction of low-surface-energy compounds [62]. Various studies demonstrated that the adhesion of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli (E. coli) bacteria was significantly reduced on superhydrophobic coatings
PDF
Album
Review
Published 08 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • Fullerene (C60) has been deposited in ultrahigh vacuum on top of a zinc tetraphenylporphyrin (ZnTPP) monolayer self-assembled on a Fe(001)–p(1 × 1)O substrate. The nanoscale morphology and the electronic properties of the C60/ZnTPP/Fe(001)–p(1 × 1)O heterostructure have been investigated by scanning
  • applications in new emerging fields, such as nanoscale catalysis [4][5], organic electronics [6][7], and spintronics [8][9], to name just a few. From a fundamental point of view, well-defined organic/inorganic heterostructures represent an interesting benchmark for the investigation of the boundary between
PDF
Album
Full Research Paper
Published 30 Aug 2022

Ultrafast signatures of magnetic inhomogeneity in Pd1−xFex (x ≤ 0.08) epitaxial thin films

  • Andrey V. Petrov,
  • Sergey I. Nikitin,
  • Lenar R. Tagirov,
  • Amir I. Gumarov,
  • Igor V. Yanilkin and
  • Roman V. Yusupov

Beilstein J. Nanotechnol. 2022, 13, 836–844, doi:10.3762/bjnano.13.74

Graphical Abstract
  • ferromagnetic state causes a qualitative change of both the reflectivity and the magneto-optical Kerr effect transients. A nanoscale magnetic inhomogeneity of the ferromagnet/paramagnet type inherent in the palladium-rich Pd1−xFex alloys reveals itself through the occurrence of a relatively slow, 10–25 ps
  • , photoinduced demagnetization component following a subpicosecond one; the former vanishes at low temperatures only in the x = 0.080 sample. We argue that the 10 ps timescale demagnetization originates most probably from the diffusive transport of d electrons under the condition of nanoscale magnetic
  • ]. Moreover, attempts have been made to use this material (with low iron concentrations of x = 0.01–0.03) for MJJ memory applications [1][14][15][24][31][32]. However, these studies faced the problems of small critical current and temporal instability of magnetic properties [33]. On the one hand, nanoscale
PDF
Album
Full Research Paper
Published 25 Aug 2022
Other Beilstein-Institut Open Science Activities