Search results

Search for "nanotube" in Full Text gives 205 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Synthesis of boron nitride nanotubes from unprocessed colemanite

  • Saban Kalay,
  • Zehra Yilmaz and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2013, 4, 843–851, doi:10.3762/bjnano.4.95

Graphical Abstract
  • yield, low cost and pure BNNTs. Keywords: boron nitride nanotube; chemical vapor deposition; colemanite; synthesis; Introduction Colemanite (Ca2B6O11·5H2O) is one of the most important compounds of more than 200 different boron ores. All boron ores include boron oxide (B2O3) at varying percentages in
  • used to synthesize boron nitride nanotubes (BNNT)s [3][4]. BNNTs, structural analogoues of carbon nanotube (CNT)s, have superior properties than CNTs due to their robust structure which resists high temperatures and harsh chemical conditions. They also have a high hydrogen storage capacity due to the
PDF
Album
Full Research Paper
Published 04 Dec 2013

Controlled synthesis and tunable properties of ultrathin silica nanotubes through spontaneous polycondensation on polyamine fibrils

  • Jian-Jun Yuan,
  • Pei-Xin Zhu,
  • Daisuke Noda and
  • Ren-Hua Jin

Beilstein J. Nanotechnol. 2013, 4, 793–804, doi:10.3762/bjnano.4.90

Graphical Abstract
  • controlled mineralization of silica, which resulted in hierarchically structured thin coatings composed of LPEI@silica hybrid nanotubes. However, the synthesis of silica nanotube powders through the alkali-induced self-assembly route was not studied systematically. In this paper, we examined the synthesis
  • of roughly 3 nm. While self-assembled polypeptides could template the formation of silica nanotubes with uniform diameter, it still remains challenge for the polypeptide template to synthesize stable silica nanotube structures with very small diameters (i.e., 10 nm) [21][22][23][24][25][26][27
  • 3.5 nm, which corresponds to the hollow inner of nanotube (Figure 2B) [38][39], which is in good agreement with the TEM observations (Figure 1C). This BET result indicates that our silica nanotubes have an excellent thermal stability compared to the conventional mesoporous silica (i.e., M41S), which
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2013

Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory

  • Mir Masoud Seyyed Fakhrabadi,
  • Abbas Rastgoo and
  • Mohammad Taghi Ahmadian

Beilstein J. Nanotechnol. 2013, 4, 771–780, doi:10.3762/bjnano.4.88

Graphical Abstract
  • exceeded a maximum limit, bending and buckling would occur, and the fluid stream that passes through the nanotube would be blocked. In another research, Grujicic et al. applied this concept to boron nitride nanotubes as nanovalves [28]. Chen et al. designed a one-way nanovalve based on a CNT junction and a
  • the larger tube can be the movable part of the system as considered in this paper, and the other parts such as graphene sheets and actuation devices can be added to the considered section of the nanotube (Figure 3). Another application of the system is its utilization for feedback control. A control
  • the CNT can be applied as control parameters for a desired behavior of the CNT by changing the stiffness and the damping of the system. Application of an external force on a nanotube and its local buckling. Electrostatic actuation of a CNT that conveys a fluid (top: “open”, bottom: “closed
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2013

A facile synthesis of a carbon-encapsulated Fe3O4 nanocomposite and its performance as anode in lithium-ion batteries

  • Raju Prakash,
  • Katharina Fanselau,
  • Shuhua Ren,
  • Tapan Kumar Mandal,
  • Christian Kübel,
  • Horst Hahn and
  • Maximilian Fichtner

Beilstein J. Nanotechnol. 2013, 4, 699–704, doi:10.3762/bjnano.4.79

Graphical Abstract
  • nanocomposite exhibits well constructed core–shell and nanotube structures, with Fe3O4 cores and graphitic shells/tubes. The as-synthesized material could be used directly as anode in a lithium-ion cell and demonstrated a stable capacity, and good cyclic and rate performances. Keywords: electrochemistry; iron
  • was synthesized by a simple one-step pyrolysis of Fe(CO)5. The nanocomposite exhibits well-constructed core–shell and nanotube structures with Fe3O4 cores and graphitic shells/tubes. The nanocomposite electrode exhibits a stable reversible capacity of 920 mAh·g−1 at 93 mA·g−1 in the subsequent 50
PDF
Album
Supp Info
Letter
Published 30 Oct 2013

Preparation of electrochemically active silicon nanotubes in highly ordered arrays

  • Tobias Grünzel,
  • Young Joo Lee,
  • Karsten Kuepper and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2013, 4, 655–664, doi:10.3762/bjnano.4.73

Graphical Abstract
  • ). Application of the thermal SiO2 reduction to electrochemically active silicon nanotube arrays When a colorless porous sample, obtained as described above (step (e) of Figure 2), is first dried at 400 °C and then submitted to the same reaction conditions including the subsequent HCl treatment (f,g), its
  • demonstrated by ellipsometry, MAS-NMR, and XPS. Finally, cyclic voltammetric investigation of the samples testifies to their function as a negative electrode material for lithium ion batteries. This novel preparative procedure differs from those available to date for making silicon nanotube arrays in three
  • , respectively). (b) 29Si MAS NMR spectra before and after reduction. (c) 7Li MAS NMR spectrum after reduction. X-ray photoelectron spectrum of a Si nanotube sample at the end of the preparation: (a) survey spectrum, (b) Si 2p peak, and (c) Li 1s peak. The XPS peak positions of reference compounds are given by
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2013

Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin

  • Alexander Harder,
  • Mareike Dieding,
  • Volker Walhorn,
  • Sven Degenhard,
  • Andreas Brodehl,
  • Christina Wege,
  • Hendrik Milting and
  • Dario Anselmetti

Beilstein J. Nanotechnol. 2013, 4, 510–516, doi:10.3762/bjnano.4.60

Graphical Abstract
  • as the formation of TMV-based semiconductive ZnO composites in field effect transistors [30]. Modifications of the viral shell proteins allow the introduction of target-oriented chemical functionalities on the nanotube surface [31]. By means of fluorescent labeling these modifications can now easily
  • single thiol-group on every capsid protein subunit of the virus surface (TMVCys, 2130 coupling sites per viral nanotube), is used [31]. The labeling procedure is performed with a substoichiometric molar ratio of 0.02:1 of Atto740 maleimide (Sigma-Aldrich, München, Germany) to viral capsid protein, in
PDF
Album
Full Research Paper
Published 11 Sep 2013

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • of the nanotubes determines the majority of their properties. Their symmetry is related to the orientation of the hexagonal lattice with respect to the axis of the tube (chirality). Depending on the chirality, a carbon nanotube shows either metallic or semiconductor behavior [4]. Thus, this allotrope
  • were the synthesis on a large scale, the reproducibility, and the control of the diameter and number of walls of the CNTs using different synthesis techniques such as arc discharge, laser ablation or chemical vapor deposition. After these issues had been addressed, the focus in carbon nanotube research
  • key achievement was the engineering of vertically oriented CNT-arrays by using CVD of ethylene, size-controlled Fe catalytic particles, and nanotube positioning by substrate patterning. The mechanism of the alignment of the CNTs was proposed to be due to the van der Waals forces where the outer wall
PDF
Album
Review
Published 22 Feb 2013

Electronic and transport properties of kinked graphene

  • Jesper Toft Rasmussen,
  • Tue Gunst,
  • Peter Bøggild,
  • Antti-Pekka Jauho and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2013, 4, 103–110, doi:10.3762/bjnano.4.12

Graphical Abstract
  • a (25,25) nanotube. Experiments by Ruffieux et al. [38] compare hydrogen adsorption on C60 molecules, CNTs, and graphite to show that reactivity is increased with curvature. In our case we find that the local electronic density of states changes little for the atoms on the pristine bent graphene
PDF
Album
Full Research Paper
Published 15 Feb 2013

Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

  • Xiaoxing Ke,
  • Carla Bittencourt,
  • Sara Bals and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2013, 4, 77–86, doi:10.3762/bjnano.4.9

Graphical Abstract
  • striped area with lower deposition density. The size distribution of the nanoclusters inside the stripes can be attributed to the regime shift as explained in the previous text. Furthermore, if we imagine a nanotube with a certain inclination angle to the electron beam, we can see that a varying defocus
  • value during deposition can lead to a varying pitch in the stripe pattering along the long axis of the nanotube. The ability to pattern the nanostructure with switchable high/low density of nanoclusters provides new potential applications in tunable wetting, adhesion, catalysis and friction properties
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2013

Current–voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution

  • Bernd M. Briechle,
  • Youngsang Kim,
  • Philipp Ehrenreich,
  • Artur Erbe,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Ulrich Groth and
  • Elke Scheer

Beilstein J. Nanotechnol. 2012, 3, 798–808, doi:10.3762/bjnano.3.89

Graphical Abstract
  • ], molecular networks with nanoparticle electrodes [18], atomic force microscope (AFM) [22], and carbon-nanotube electrode [23] techniques, as well as structural studies using scanning tunneling microscopy (STM) [24][25] have been performed successfully. In addition, mechanically controlled break-junctions
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2012

Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations

  • Carla Bittencourt,
  • Peter Krüger,
  • Maureen J. Lagos,
  • Xiaoxing Ke,
  • Gustaaf Van Tendeloo,
  • Chris Ewels,
  • Polona Umek and
  • Peter Guttmann

Beilstein J. Nanotechnol. 2012, 3, 789–797, doi:10.3762/bjnano.3.88

Graphical Abstract
  • sodium titanate nanostructures. Figure 1b shows a high-resolution TEM image of several long structures, showing parallel dark contrast, typical for tubular morphology (see Supporting Information File 1). The nanotube edges consist of several layers spaced by 0.75 nm (see Figure 1 insert). Typical high
  • measurements. NEXAFS spectra at the Ti L-edge recorded on (1) SrTiO3, (2) (Na,H)TiNTs and (3) anatase. The vertical lines indicate the photon energy of the first four X-ray images in Figure 2. The inset shows the pre-edge structures in the nanotube spectrum. (b) Ti L-edge spectra of (1) SrTiO3, (2) (Na,H)TiNTs
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2012

Influence of the diameter of single-walled carbon nanotube bundles on the optoelectronic performance of dry-deposited thin films

  • Kimmo Mustonen,
  • Toma Susi,
  • Antti Kaskela,
  • Patrik Laiho,
  • Ying Tian,
  • Albert G. Nasibulin and
  • Esko I. Kauppinen

Beilstein J. Nanotechnol. 2012, 3, 692–702, doi:10.3762/bjnano.3.79

Graphical Abstract
  • concentration was monitored at the reactor outlet with a GRIMM Vienna Type differential mobility analyzer (DMA) and a Faraday cup electrometer (SMPS+E). The catalyst source was fixed in a temperature zone in which carbon nanotube growth is known to be possible [23], corresponding to a wall temperature of 700 °C
  • absorbers in the film (in our case carbon, Ccarbon). In carbon nanotube thin films, the carbon is distributed in the form of carbon nanotubes with an average tube length and diameter (dtube). Due to van der Waals interactions, the carbon nanotubes form regular bundles with an average length (Lbundle) and
PDF
Album
Full Research Paper
Published 17 Oct 2012

Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells

  • Andrea Capasso,
  • Luigi Salamandra,
  • Aldo Di Carlo,
  • John M. Bell and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2012, 3, 524–532, doi:10.3762/bjnano.3.60

Graphical Abstract
  • defective and residual allotropes of carbon, such as diamond-like and amorphous carbon, are found around the nanotube walls (confirmed also by Raman spectroscopy, not shown). In our context, the presence of defects in the tubular structure could be an advantage in terms of conductivity, because it can
  • thin film of Fe catalyst on ITO-coated glass. By investigating the effect of the growth temperature on the nanotube yield and on the ITO layer, we have selected the optimal CVD conditions for the use of such substrates as anodes for P3HT:PCBM solar cells. These process conditions address three of the
  • nanotube density obtained with an ultrathin (2 nm) layer of catalyst; and (iii) the occurrence of short circuits with the counter electrode is limited by the short length of the CNTs. By using this set of parameters, we built a 3D nanostructured electrode that improved the performance of the cell both in
PDF
Album
Full Research Paper
Published 19 Jul 2012

Conducting composite materials from the biopolymer kappa-carrageenan and carbon nanotubes

  • Ali Aldalbahi,
  • Jin Chu,
  • Peter Feng and
  • Marc in het Panhuis

Beilstein J. Nanotechnol. 2012, 3, 415–427, doi:10.3762/bjnano.3.48

Graphical Abstract
  • these CNT networks are contingent on the CNT/dispersant ratio. Increasing the nanotube concentration usually leads to an increase in the electrical conductivity and to mechanical reinforcement [31][32]. Vacuum filtration of dispersions usually results in films, which are generally referred to as
  • film prepared by the evaporative-casting method decreased from 7.4 S/cm to 2.9 S/cm through the addition of glycerin. This lowering of the conductivity suggests that glycerin may affect the number of conducting pathways or junctions in the nanotube network. Mechanical properties of films The mechanical
PDF
Album
Full Research Paper
Published 23 May 2012

Structural, electronic and photovoltaic characterization of multiwalled carbon nanotubes grown directly on stainless steel

  • Luca Camilli,
  • Manuela Scarselli,
  • Silvano Del Gobbo,
  • Paola Castrucci,
  • Eric Gautron and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2012, 3, 360–367, doi:10.3762/bjnano.3.42

Graphical Abstract
  • , dependent on the number of walls in the nanotube structure [14]. Figure 7 shows a 10 × 10 μm2 atomic force microscopy (AFM) image of the as-exfoliated HOPG sample used for spectroscopic characterization. Figure 8 shows the scheme of the two different architectures used to build and test the photovoltaic
PDF
Album
Full Research Paper
Published 02 May 2012

Modeling noncontact atomic force microscopy resolution on corrugated surfaces

  • Kristen M. Burson,
  • Mahito Yamamoto and
  • William G. Cullen

Beilstein J. Nanotechnol. 2012, 3, 230–237, doi:10.3762/bjnano.3.26

Graphical Abstract
  • ], and its anomalous frictional behavior [16]. Beyond graphene, the use of SiO2 is commonplace as a substrate in electronic-device research (carbon-nanotube devices, organic electronics, etc.). While one may readily obtain atomic resolution on certain flat surfaces, such as the well-studied (7 × 7
PDF
Album
Full Research Paper
Published 13 Mar 2012

Current-induced forces in mesoscopic systems: A scattering-matrix approach

  • Niels Bode,
  • Silvia Viola Kusminskiy,
  • Reinhold Egger and
  • Felix von Oppen

Beilstein J. Nanotechnol. 2012, 3, 144–162, doi:10.3762/bjnano.3.15

Graphical Abstract
  • model can be seen to be inspired by a double dot on a suspended carbon nanotube, or an H2 molecule in a break junction. The model is depicted schematically in Figure 2. The bare dot Hamiltonian corresponds to degenerate electronic states ε0, localized on the left and right atoms or quantum dots, with
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2012

Surface functionalization of aluminosilicate nanotubes with organic molecules

  • Wei Ma,
  • Weng On Yah,
  • Hideyuki Otsuka and
  • Atsushi Takahara

Beilstein J. Nanotechnol. 2012, 3, 82–100, doi:10.3762/bjnano.3.10

Graphical Abstract
  • great research interest due to their one-dimensional structure and reactive surfaces. In this review paper, recent developments in surface functionalization of an aluminosilicate nanotube, “imogolite”, are introduced. The functionalization processes are based on the robust affinity between phosphate
  • groups of organic molecules and the aluminol (AlOH) surface of imogolite nanotubes. An aqueous modification process employing a water soluble ammonium salt of alkyl phosphate led to chemisorption of molecules on imogolite at the nanotube level. Polymer-chain-grafted imogolite nanotubes were prepared
  • through surface-initiated polymerization. In addition, the assembly of conjugated molecules, 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-yl)ethylphosphonic acid (HT3P) and 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-yl)ethylphosphonic acid 1,1-dioxide (HT3OP), on the imogolite nanotube surface was achieved by
PDF
Album
Review
Published 02 Feb 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
  • anodization of titanium in HF. Here, SAMs of 1H,1H,2H,2H-perfluorooctyl-triethoxysilane were chemisorbed on selected areas in the nanotube array and served to selectively protect the nanotubes upon immersion in HF [84]. Electron transfer in SAMs connected to TiO2 Electron transfer through SAMs has been
PDF
Album
Review
Published 20 Dec 2011

Current-induced dynamics in carbon atomic contacts

  • Jing-Tao Lü,
  • Tue Gunst,
  • Per Hedegård and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2011, 2, 814–823, doi:10.3762/bjnano.2.90

Graphical Abstract
  • show how the current-induced effects could be investigated in molecular contacts connecting gated graphene or nanotube electrodes. Graphene is now being explored very extensively due to its outstanding electrical and thermal transport properties [10][11][12]. Besides being highly important in their own
  • right, carbon nanotube- or graphene-based nanostructures may offer an interesting test bed for studies of current-induced effects at the atomic scale. For such systems, experiments with atomic resolution, employing for instance state-of-the-art electron microscopes, can be performed in the presence of
PDF
Album
Adds. & Corrs.
Full Research Paper
Published 16 Dec 2011
Graphical Abstract
  • elemental nanoribbons (Figure 2c). A similar surface pattern has been observed for a carbon nanotube (CNT) film that was prepared by first depositing a CNT array on a silicon wafer and then performing PSS wrapping in water [35]. The formation of this CNT pyramidlike pattern was induced by the capillarity
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2011

Generation and agglomeration behaviour of size-selected sub-nm iron clusters as catalysts for the growth of carbon nanotubes

  • Ravi Joshi,
  • Benjamin Waldschmidt,
  • Jörg Engstler,
  • Rolf Schäfer and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2011, 2, 734–739, doi:10.3762/bjnano.2.80

Graphical Abstract
  • into [Al@SiOx] surfaces at a low surface coverage corresponding to a few thousandths up to a few hundredths of a monolayer in order to avoid initial cluster agglomeration. These studies are aimed towards gaining an insight into the lower limit of the size regime of carbon nanotube (CNT) growth by
PDF
Album
Full Research Paper
Published 01 Nov 2011

How to remove the influence of trace water from the absorption spectra of SWNTs dispersed in ionic liquids

  • Juan Yang,
  • Daqi Zhang and
  • Yan Li

Beilstein J. Nanotechnol. 2011, 2, 653–658, doi:10.3762/bjnano.2.69

Graphical Abstract
  • where the water peaks lie. The well-resolved electronic absorption bands of SWNTs demonstrate good dispersion of nanotubes in this IL. The intensity of the water band at 1405 nm is even higher than that of the nanotube absorption bands, so the deconvolution of the two broad bands close to 1400 nm with
  • respect to semiconducting nanotube chiralities will be affected significantly by this intense water band. In order to remove this effect as well as to quantify the amount of water taken up by the untreated sample, a spectral subtraction method was utilized. To obtain the best fit with the spectrum of the
  • as the deconvoluted individual peaks corresponding to different chiralities of the semiconducting nanotubes, as indicated in the figure. Compared to surfactant SDS-dispersed HiPco SWNTs [23], an average of 30 meV red-shift in energy is observed in the semiconducting nanotube E11 region and this can
PDF
Album
Full Research Paper
Published 30 Sep 2011

Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film

  • Sławomir Boncel,
  • Krzysztof Z. Walczak and
  • Krzysztof K. K. Koziol

Beilstein J. Nanotechnol. 2011, 2, 311–317, doi:10.3762/bjnano.2.36

Graphical Abstract
  • , Cambridge CB2 3QZ, United Kingdom 10.3762/bjnano.2.36 Abstract The physical compatibility of a highly aligned carbon nanotube (HACNT) film with liquids was established using a fast and convenient experimental protocol. Two parameters were found to be decisive for the infiltration process. For a given
  • density of nanotube packing, the thermodynamics of the infiltration process (wettability) were described by the contact angle between the nanotube wall and a liquid meniscus (θ). Once the wettability criterion (θ < 90°) was met, the HACNT film (of free volume equal to 91%) was penetrated gradually by the
  • ; Introduction Wettability of carbon nanotubes (CNTs) and highly aligned carbon nanotube (HACNT) films is an important aspect in numerous technologies including manufacture of composites [1], fabrication of constantly/interchangeably hydrophobic or hydrophilic materials [2][3], nanofluidic devices [4] or sponges
PDF
Album
Letter
Published 20 Jun 2011

Studies towards synthesis, evolution and alignment characteristics of dense, millimeter long multiwalled carbon nanotube arrays

  • Pitamber Mahanandia,
  • Jörg J. Schneider,
  • Martin Engel,
  • Bernd Stühn,
  • Somanahalli V. Subramanyam and
  • Karuna Kar Nanda

Beilstein J. Nanotechnol. 2011, 2, 293–301, doi:10.3762/bjnano.2.34

Graphical Abstract
PDF
Album
Full Research Paper
Published 14 Jun 2011
Other Beilstein-Institut Open Science Activities