Search results

Search for "nitrate" in Full Text gives 215 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A simple approach to the synthesis of Cu1.8S dendrites with thiamine hydrochloride as a sulfur source and structure-directing agent

  • Xiaoliang Yan,
  • Sha Li,
  • Yun-xiang Pan,
  • Zhi Yang and
  • Xuguang Liu

Beilstein J. Nanotechnol. 2015, 6, 881–885, doi:10.3762/bjnano.6.90

Graphical Abstract
  • nitrate and thiamine hydrochloride were selected as the starting materials in the water phase under hydrothermal conditions. No addition of a surfactant or a complex reagent was required for the synthesis of the Cu1.8S dendrite structures. Thiamine hydrochloride was employed as a sulfur source and
  • sulfur source. In addition, the functional groups in thiamine may play an important role in the oriented growth of copper sulfide. To the best of our knowledge the application of thiamine hydrochloride, an abundant and cheap biomolecule, and copper nitrate in water for the growth of Cu1.8S with a unique
  • metal ions could interact with biomolecules to form stable complexes. In this experiment, copper nitrate and thiamine hydrochloride is dissolved in water to form a mixture in which Cu2+ ions coordinate with thiamine hydrochloride to form a complex. When the mixture was sealed and kept at 180 °C under
PDF
Album
Full Research Paper
Published 01 Apr 2015

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

  • Omar F. Farhat,
  • Mohd M. Halim,
  • Mat J. Abdullah,
  • Mohammed K. M. Ali and
  • Nageh K. Allam

Beilstein J. Nanotechnol. 2015, 6, 720–725, doi:10.3762/bjnano.6.73

Graphical Abstract
  • procedure, 0.05 M zinc nitrate (Zn(NO3)2·6H2O) was mixed with hexamethylenetetramine (HMT) in a glass beaker and slowly stirred until complete dissolution was achieved. The growth temperature and time was 95 °C and 3 h, respectively. The beaker was then left inside the oven for 30 min to cool down to 40 °C
PDF
Album
Full Research Paper
Published 12 Mar 2015

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

  • Ulrike Taylor,
  • Daniela Tiedemann,
  • Christoph Rehbock,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2015, 6, 651–664, doi:10.3762/bjnano.6.66

Graphical Abstract
  • nitrate control. Nanoparticle concentration was 10 µg/mL. (A) Motility assessed with Computer Assissted Sperm Analysis, (B) Membrane integrity assessed with propidium iodide stain and flow cytometer, (C) morphology assessed with phase contrast microscope and evaluation of 200 sperm cells per group per day
  • . Shown are percentage of spermatozoa, which differ compared to the control [values are mean ± SD]. Reproduced with permission from [50]. Copyright 2014 Royal Society of Chemistry. Oocyte maturation rates after 46 h of in vitro maturation in the presence of various nanoparticle types or silver nitrate in
PDF
Album
Video
Full Research Paper
Published 05 Mar 2015

Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells

  • Syeda Arooj,
  • Samina Nazir,
  • Akhtar Nadhman,
  • Nafees Ahmad,
  • Bakhtiar Muhammad,
  • Ishaq Ahmad,
  • Kehkashan Mazhar and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2015, 6, 570–582, doi:10.3762/bjnano.6.59

Graphical Abstract
  • ), pyruvic acid, silver nitrate, NaN3, sodium chloride, sodium dodecyl sulfate (SDS), sodium hydroxide (NaOH), sodium sarcosinate, streptomycin sulfate, sulforhodamine B (SRB), 1,1,3,3-tetramethoxypropane, MTT, thiobarbituric acid (TBA), trichloroacetic acid (TCA), Triton X-100, trizma-Base, trypsin/EDTA (5
  • %), and zinc nitrate, were purchased from Sigma-Aldrich (USA). Dulbecco's Modified Eagle Medium (DMEM) and fetal bovine serum (FBS) were purchased from GibcoBRL, Gaithersburg, MD. Nanocomposite synthesis The nanocomposites ZnO:Ag (1, 3, 5, 10, 20 and 30% Ag) were synthesized following a previously
  • reported procedure with some modifications [29]. Briefly, zinc nitrate hexahydrate and the required amount of silver nitrate (1, 3, 5, 10, 20 and 30 mol %) were dissolved in 5% v/v Tween 80 to achieve 50 mM concentration. The resulting substrate solution was titrated against 100 mM NaOH through a drop-wise
PDF
Album
Full Research Paper
Published 26 Feb 2015

Tunable white light emission by variation of composition and defects of electrospun Al2O3–SiO2 nanofibers

  • Jinyuan Zhou,
  • Gengzhi Sun,
  • Hao Zhao,
  • Xiaojun Pan,
  • Zhenxing Zhang,
  • Yujun Fu,
  • Yanzhe Mao and
  • Erqing Xie

Beilstein J. Nanotechnol. 2015, 6, 313–320, doi:10.3762/bjnano.6.29

Graphical Abstract
  • -Aldrich, aluminum nitrate nanohydrate (Al(NO3)3·9H2O) and tetraethoxysilane (TEOS) were used for the Al and Si sources, respectively, both purchased from Shantou Chemical Corp., China. All other chemicals were purchased from Tianjin Chemical Company (Tianjin, China). All chemicals were analytically pure
PDF
Album
Full Research Paper
Published 28 Jan 2015

Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

  • Jes Ærøe Hyllested,
  • Marta Espina Palanco,
  • Nicolai Hagen,
  • Klaus Bo Mogensen and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2015, 6, 293–299, doi:10.3762/bjnano.6.27

Graphical Abstract
  • capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges as reducing agents. The evolvement of a characteristic
  • surface plasmon extinction spectrum in the range of 420 nm to 480 nm indicates the formation of silver nanoparticles after mixing silver nitrate solution and fruit extract. Shifts in plasmon peaks over time indicate the growth of nanoparticles. Electron microscopy shows that the shapes of the
  • enhanced Raman scattering (SERS). Extracts from these two fruits have been used for preparing silver and gold nanoparticles [12][15][16][17][18][19]. Here we explore the formation of nanoparticles by varying conditions in the preparation process such as ratios of the mixtures of silver nitrate and fruit
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2015

Mechanical properties of MDCK II cells exposed to gold nanorods

  • Anna Pietuch,
  • Bastian Rouven Brückner,
  • David Schneider,
  • Marco Tarantola,
  • Christina Rosman,
  • Carsten Sönnichsen and
  • Andreas Janshoff

Beilstein J. Nanotechnol. 2015, 6, 223–231, doi:10.3762/bjnano.6.21

Graphical Abstract
  • mL of 0.1 M CTAB, 7 μL of 0.04 M silver nitrate (AgNO3), and 105 μL of 0.08 M ascorbic acid. Nanoparticle size was controlled by transmission electron microscopy (TEM). We determined a length of 38 ± 6.5 nm and a width of 17 ± 3 nm for nanorod and a diameter of 43 nm for spheres [25]. Concentrations
PDF
Album
Full Research Paper
Published 20 Jan 2015

Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

  • Christina Rosman,
  • Sebastien Pierrat,
  • Marco Tarantola,
  • David Schneider,
  • Eva Sunnick,
  • Andreas Janshoff and
  • Carsten Sönnichsen

Beilstein J. Nanotechnol. 2014, 5, 2479–2488, doi:10.3762/bjnano.5.257

Graphical Abstract
  • solution consisting of HAuCl4 (75 µL, 0.1 M), CTAB (10 mL, 0.1 M), silver nitrate (AgNO3, 7 µL, 0.04 M), and ascorbic acid (AA, 105 µL, 0.0788 M). Shortly before the experiment, the nanoparticles were washed in two centrifugation steps with water to remove unbound CTAB. Particle characterization Particles
PDF
Album
Supp Info
Full Research Paper
Published 24 Dec 2014

Synthesis and characterization of fluorescence-labelled silica core-shell and noble metal-decorated ceria nanoparticles

  • Rudolf Herrmann,
  • Markus Rennhak and
  • Armin Reller

Beilstein J. Nanotechnol. 2014, 5, 2413–2423, doi:10.3762/bjnano.5.251

Graphical Abstract
  • synthesis of ceria NP [38][39][40][41] and found the procedure with air oxidation of cerium(III) nitrate in ethanol/water mixtures in the presence of ammonia very convenient [42][43]. At 60–70 °C (open flask) one obtains small crystalline NP in ethanol/water 4:1 as solvent of almost spherical shape (average
  • stabilize the NP with surfactants like IGEPAL CO-520 but with no appreciable success. The only efficient approach up to now to controlled agglomeration of ceria NP is their synthesis from cerium(III) nitrate in ethanol/water mixtures in the presence of polyvinylpyrrolidone (PVP), at temperatures exceeding
  • 120 °C [48]. Under these conditions, nitrate acts as oxidizing agent, and the reaction can be done in closed vessels. The overall reaction is 3Ce3+ + NO3− + 4H2O → 3CeO2 + NO + 8H+. The authors suggest that PVP interacts with the crystal seeds and prevents an increase in size over the limit of 8–10 nm
PDF
Album
Review
Published 16 Dec 2014

Effect of silver nanoparticles on human mesenchymal stem cell differentiation

  • Christina Sengstock,
  • Jörg Diendorf,
  • Matthias Epple,
  • Thomas A. Schildhauer and
  • Manfred Köller

Beilstein J. Nanotechnol. 2014, 5, 2058–2069, doi:10.3762/bjnano.5.214

Graphical Abstract
  • dihydrate (Fluka, p.a.), silver nitrate (Fluka, p.a.), and D-(+)-glucose (Baker) were used. Ultrapure water was prepared with an ELGA Purelab ultra instrument. Ag-NP were stored under argon to prevent partial oxidative dissolution (which drastically influences nanoparticle toxicity) prior to cell culture
PDF
Album
Full Research Paper
Published 10 Nov 2014

Rapid degradation of zinc oxide nanoparticles by phosphate ions

  • Rudolf Herrmann,
  • F. Javier García-García and
  • Armin Reller

Beilstein J. Nanotechnol. 2014, 5, 2007–2015, doi:10.3762/bjnano.5.209

Graphical Abstract
  • (orthorhombic Zn3(PO4)2·4H2O) was detected. In addition to amorphous zinc phosphate, hopeite and parahopeite were identified as reaction products from non-coated ZnO-NP and phosphate in sodium nitrate solution [24] (but no dihydrate), and hopeite and dihydrate during the precipitation of zinc phosphate in cell
PDF
Album
Full Research Paper
Published 05 Nov 2014

Carbon nano-onions (multi-layer fullerenes): chemistry and applications

  • Juergen Bartelmess and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2014, 5, 1980–1998, doi:10.3762/bjnano.5.207

Graphical Abstract
  • synthesized in situ from nickel nitrate hexahydrate and ammoniumhydroxide in ethanol in the presence of (4-dimethylamino)pyridine (4-DMAP) as modifier in a one-pot multi-step reaction. Calcination of the CNO/4-DMAP/Ni(OH)2 composite led to the CNO/4-DMAP/NiO composite material. The electrochemical properties
PDF
Album
Review
Published 04 Nov 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • silver nanoparticles with defined shapes and sizes is extensively described in the literature, with more than 50 publications alone by the group of Xia et al. [21]. The most common and best examined method is the polyol process during which an ionic silver salt (typically silver nitrate or silver
  • quantities over a large number of experiments. Because of this, we decided to synthesize our particles by the reduction of silver nitrate with glucose in the presence of PVP according to Wang et al. [28]. This leads to high yields of spherical silver nanoparticles with diameters of around 70–120 nm and a few
  • nanoparticles neither caused toxicity nor oxidative stress, while an incubation for 4 h with 100 µM (10.8 µg mL−1) silver in the form of silver nitrate strongly damaged cultured astrocytes and deprived these cells almost completely of the important antioxidant glutathione [108]. The high resistance of cultured
PDF
Album
Review
Published 03 Nov 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • , or titanium nitrate) and embedded in a planar substrate, arranged in an array and connected to an external electrical circuitry. By using individual microelectrodes it is possible to stimulate or record neural electrical activity non-invasively, both in vivo and in vitro. For these applications
PDF
Album
Correction
Review
Published 23 Oct 2014

Nanocrystalline ceria coatings on solid oxide fuel cell anodes: the role of organic surfactant pretreatments on coating microstructures and sulfur tolerance

  • Chieh-Chun Wu,
  • Ling Tang and
  • Mark R. De Guire

Beilstein J. Nanotechnol. 2014, 5, 1712–1724, doi:10.3762/bjnano.5.181

Graphical Abstract
  • porous anode structure, can lead to the reduction or elimination of sulfur poisoning. The procedures used by other groups to infiltrate ceria into SOFC anodes usually involve immersing the anodes into a precursor solution, e.g., of cerium nitrate [16][18][22][23][24] or through a sol–gel route [25
PDF
Album
Full Research Paper
Published 06 Oct 2014

Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study

  • Nicolas Thewes,
  • Peter Loskill,
  • Philipp Jung,
  • Henrik Peisker,
  • Markus Bischoff,
  • Mathias Herrmann and
  • Karin Jacobs

Beilstein J. Nanotechnol. 2014, 5, 1501–1512, doi:10.3762/bjnano.5.163

Graphical Abstract
  • [1]. Staphylococcus carnosus is an apathogenic member of that genus and has been described first in the early 1980s [2]. The name Staphylococcus carnosus reflects its important role in meat production as it reduces nitrate to nitrite and prevents food rancidity by producing the anti-oxidant enzymes
PDF
Album
Full Research Paper
Published 10 Sep 2014

Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

  • Dickson Joseph,
  • Nisha Tyagi,
  • Christian Geckeler and
  • Kurt E.Geckeler

Beilstein J. Nanotechnol. 2014, 5, 1452–1462, doi:10.3762/bjnano.5.158

Graphical Abstract
  • and drug delivery due to their pH sensitivity, high stability and biocompatible surfaces. Experimental Materials and characterization Potassium tetrachloroaurate (KAuCl4) was purchased from Aldrich. Silver nitrate (AgNO3) was obtained from Kojima Chemicals Co. Ltd., Korea. All of the proteins, calf
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2014

Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches

  • Fabian Herzog,
  • Kateryna Loza,
  • Sandor Balog,
  • Martin J. D. Clift,
  • Matthias Epple,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1357–1370, doi:10.3762/bjnano.5.149

Graphical Abstract
  • weight 40,000 g/mol), silver nitrate (Roth, p.a.), and D-(+)-glucose (Sigma-Aldrich) were used. Ultrapure water was prepared with an ELGA Purelab ultra instrument. Suspensions for exposure were adjusted to 24, 240 and 2400 µg Ag/mL by dilution in double-distilled H2O or via ultrafiltration by using 30
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2014

Self-organization of mesoscopic silver wires by electrochemical deposition

  • Sheng Zhong,
  • Thomas Koch,
  • Stefan Walheim,
  • Harald Rösner,
  • Eberhard Nold,
  • Aaron Kobler,
  • Torsten Scherer,
  • Di Wang,
  • Christian Kübel,
  • Mu Wang,
  • Horst Hahn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 1285–1290, doi:10.3762/bjnano.5.142

Graphical Abstract
  • electrochemical environments as well as for the fabrication of highly-ordered, single-crystalline metal nanowires. Keywords: crystal growth; electrochemistry; electrodeposition; mesowires; nanoelectrochemistry; nanowires; self-organization; silver nanowires; silver nitrate; stability; Introduction Nanoscale and
  • measurements presented in this article). STEM micrographs were acquired using an HAADF (High-Angle Annular Dark-Field) detector. Schematic diagrams of the experimental procedure. (a) By slowly freezing the silver nitrate electrolyte a thin aqueous layer of electrolyte forms between the glass slide and the ice
PDF
Album
Full Research Paper
Published 15 Aug 2014

Nanoporous composites prepared by a combination of SBA-15 with Mg–Al mixed oxides. Water vapor sorption properties

  • Amaury Pérez-Verdejo,
  • Alvaro Sampieri,
  • Heriberto Pfeiffer,
  • Mayra Ruiz-Reyes,
  • Juana-Deisy Santamaría and
  • Geolar Fetter

Beilstein J. Nanotechnol. 2014, 5, 1226–1234, doi:10.3762/bjnano.5.136

Graphical Abstract
  • with Si–CH3 and then functionalized with Mg and Al nitrate salts, has promoted the nanocrystal growth of Mg–Al hydrotalcite on the pore walls of the SBA-15 [9]. This composite presented a high catalytic activity in the acetone condensation at 273 K. Moreover, a basic composite has been prepared from
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2014

Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts

  • Jing Wang,
  • Ke Feng,
  • Hui-Hui Zhang,
  • Bin Chen,
  • Zhi-Jun Li,
  • Qing-Yuan Meng,
  • Li-Ping Zhang,
  • Chen-Ho Tung and
  • Li-Zhu Wu

Beilstein J. Nanotechnol. 2014, 5, 1167–1174, doi:10.3762/bjnano.5.128

Graphical Abstract
  • of the system. To examine any counter anion effects, we further used four different kinds of cobalt salts in our photocatalytic hydrogen evolution system: cobalt chloride, cobalt nitrate, cobalt perchlorate and cobalt acetate. The amounts of evolved hydrogen in each system did not differ much
PDF
Album
Supp Info
Full Research Paper
Published 29 Jul 2014

Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development

  • Ulrike Taylor,
  • Wiebke Garrels,
  • Annette Barchanski,
  • Svea Peterson,
  • Laszlo Sajti,
  • Andrea Lucas-Hahn,
  • Lisa Gamrad,
  • Ulrich Baulain,
  • Sabine Klein,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2014, 5, 677–688, doi:10.3762/bjnano.5.80

Graphical Abstract
  • nitrate. To exclude the influence of the NO3−-ions on the embryo development 25 µM potassium nitrate controls were also run. Embryo development was assessed on a daily basis and documented by using a stereo-microscope (Olympus SZX16, Olympus, Hamburg, Germany) equipped with a camera (Olympus DP72, Olympus
PDF
Album
Full Research Paper
Published 21 May 2014

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • aqueous solutions of zinc nitrate and KOH involves the following reactions [37]: The concentration of KOH is an important factor in deciding the morphology of the ZnO nanostructures that are formed. The addition of aqueous KOH into Zn salt solution leads to formation of white precipitates of Zn(OH)2
  • decoration with Ag nanoparticles, which suppress the recombination of photodegenerated electrons and holes and improve sun-light utilization due to plasmonic response of Ag nanoparticles. Experimental Materials Zinc nitrate hexahydrate (Zn(NO3)·6H2O, Merck, Germany) and potassium hydroxide (KOH, SRL, India
  • ) were used as the starting materials for the synthesis of ZnO nanostructures. Silver nitrate (AgNO3, Spectrochem, India) and trisodium citrate (Na3C6H5O7, CDH, India) were used for the photodeposition of Ag nanoparticles onto ZnO nanostructures. Methylene blue (MB, SRL India) was used as dye for
PDF
Album
Full Research Paper
Published 15 May 2014

In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers

  • Tianxun Gong,
  • Douglas Goh,
  • Malini Olivo and
  • Ken-Tye Yong

Beilstein J. Nanotechnol. 2014, 5, 546–553, doi:10.3762/bjnano.5.64

Graphical Abstract
  • have minimal cytotoxicity and they can be used for long term in vitro and in vivo imaging study. Experimental Materials: Hydrogen tetrachloroaurate(III) trihyrate (HAuCl4·3H2O), cetylmethylammonium bromide (CTAB), sodium borohydride (NaBH4), silver nitrate (AgNO3), L-ascorbic acid, trisodium citrate
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2014

Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

  • Subas K. Muduli,
  • Songling Wang,
  • Shi Chen,
  • Chin Fan Ng,
  • Cheng Hon Alfred Huan,
  • Tze Chien Sum and
  • Han Sen Soo

Beilstein J. Nanotechnol. 2014, 5, 517–523, doi:10.3762/bjnano.5.60

Graphical Abstract
  • Polycrystalline Ce7O12 samples have been previously synthesized, but harsh conditions (up to 1030 °C) by reduction of CeO2 with CO were employed [25][26]. Instead, mild, surfactant-free solvothermal conditions were used to prepare mesoporous cerium oxide with oxygen vacancies. A solution of ceric ammonium nitrate
PDF
Album
Supp Info
Letter
Published 24 Apr 2014
Other Beilstein-Institut Open Science Activities