Search results

Search for "CD44" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • . Another study employed CD44–hyaluronic acid interaction to endow a diselenide-bridged hyaluronic acid nanogel (SeNG) with the ability to specifically accumulate at CD44-overexpressed inflammatory cells [103]. Both in vitro and in vivo experiments demonstrated that the designed SeNG could not only
PDF
Album
Review
Published 12 Apr 2024

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • mechanisms involved in cancer, such as apoptotic proteins (e.g., Bcl-2 survival protein, tumour protein p53, tumour necrosis factor, and nuclear factor kappa-B) [23][24], cancer surface markers (CD44, CD133, and ALDH1) [25] signaling pathways (e.g., PI3K/AKT/mTOR pathway, Hippo pathway, Wnt/β-catenin pathway
PDF
Album
Review
Published 04 Sep 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • protein ingredients (e.g., EpCAM, N-cadherin, E-cadherin, galectin-1, galectin-3, integrins, CD24, CD44, and CD47 [34][35][36]) derived from the surface of the cancer cell membrane. Inspired by these characteristics of cancer cells, biomimetic cancer cell membrane-coated NPs were designed for tumor target
  • of DXM to inflammatory regions via the cancer cell membrane-expressed adhesion receptor CD44, which inhibits the expression of inflammation-related components [25]. Furthermore, the highly expressed PD-L1 and CD155 on the cancer cell membrane inhibited the co-receptors PD-1 and TIGHT, thereby
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • include ανβ3 integrin, aminopeptidase N (CD13), lymphocyte homing receptor (CD44), programmed death ligand-1 (CD274), folate receptor protein, nucleolin receptor, epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), human epidermal growth factor receptor 2 (HER2
  • erlotinib, coated with a phospholipid layer, with anchors composed of hyaluronic acid–adipic acid hydralazide–poly(ethylene glycol) (HA-ADH-PEG). Hyaluronic acid-decorated lipid polymer hybrid nanoparticles (LPH NPs) specifically target overexpressed CD44 at the NSCLC cells. In the acidic tumor environment
  • with hyaluronic acid–doxorubicin NPs layered by electrostatic adsorption upon the micelle surface. Hyaluronic acid was used for CD44 targeting (a receptor that is often overexpressed on the surface of lung tumor cells), as well as for the optimization of biodistribution, improved tumor homing potential
PDF
Album
Review
Published 22 Feb 2023

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • CD44. Besides, they reported complementary evidence in which in vivo studies in female BALB/c mice showed that CUR nanococrystals had better anticancer effects in a 4T1 orthotopic breast cancer model as compared to F-CUR. Ribas et al. [57] reported that supercritical solvents (and no cosolvents) were
PDF
Album
Review
Published 15 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Silver nanoparticles induce the cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells via telomere length extension

  • Khosro Adibkia,
  • Ali Ehsani,
  • Asma Jodaei,
  • Ezzatollah Fathi,
  • Raheleh Farahzadi and
  • Mohammad Barzegar-Jalali

Beilstein J. Nanotechnol. 2021, 12, 786–797, doi:10.3762/bjnano.12.62

Graphical Abstract
  • was carried out for the immunophenotypic characterization of BM-MSCs. The mesenchymal cell surface markers CD44 and CD90 as positive markers and the hematopoietic cell surface markers CD31 and CD34 as negative markers were investigated. As shown in Figure 2A–E, the BM-MSCs were negative for CD31 (0.03
  • %) and CD34 (0.25%) and positive for CD44 (92.6%) and CD90 (89.4%). Cardiomyogenic differentiation confirmation of BM-MSCs According to previous studies, MSCs can differentiate into cardiomyocyte cells if they are cultured in a specific cardiomyocyte differentiation medium [18][19]. In this section, the
  • incubated with CD31, CD34, CD73, and CD44 antibodies for 30 min at 4 °C. Next, a FACS instrument was used to quantify the florescence intensity of cells. Also, the multilineage differentiation potential was assessed. BM-MSCs were cultured in adipogenic and osteogenic induction medium for 21 days. At the end
PDF
Album
Full Research Paper
Published 02 Aug 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • efficacy of the cancer treatment. This article will focus on novel design strategies for nanoscale drug delivery systems, based on the unique molecular signatures of myeloid leukemia and EGFR/CD44-positive solid tumors, and the impact of novel discoveries in molecular tumor profiles on future
  • chemotherapeutic protocols. Keywords: CD44; EGFR; liquid tumors; molecular tumor targeting; myeloid leukemia; solid tumors; surface-engineered nanoparticles; Introduction The conventional chemotherapy regimens of both liquid (hematological) and solid tumors are challenged by their lack of targeting ability
  • molecular screening and novel discoveries related to unique cancer molecular signatures, including the specific biomarkers of the cancer stem cells and the correlated action of receptors in cancer survival, such as the frequently reported CD44/EGFR axis, resulted in useful strategies for the development of
PDF
Album
Review
Published 29 Apr 2021

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • with polyethyleneimine and conjugated with CD44 siRNA can be used as non-viral gene therapy vectors. Polyethylene imine is the material of choice for nucleic acid intracellular delivery, as it gives a positive charge to the nanoparticle surface [41]. Polyvinyl alcohol (PVA)-coated SPIONs were tested as
PDF
Album
Review
Published 27 Jul 2020

Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine

  • Valentina Francia,
  • Daphne Montizaan and
  • Anna Salvati

Beilstein J. Nanotechnol. 2020, 11, 338–353, doi:10.3762/bjnano.11.25

Graphical Abstract
  • corresponding receptors [23][24], or hyaluronic acid, which directs nanocarriers to CD44-overexpressing tumour cells [25], among many others. While many new targeted nanomedicines are developed, just few of them are currently present on the market [6]. In fact, achieving efficient targeting in vivo remains a
PDF
Album
Review
Published 14 Feb 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • -assembly [93][111][112]. Among the targeting molecules, hyaluronic acid [111][112] is known to interact with CD44 over-expressed by some tumor cells. Mannitol [113] or galactose [114] have been used for their inherent biocompatibility and bioadhesive/targeting properties. Interestingly mannitol derivatives
PDF
Album
Review
Published 15 Jan 2020

The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency

  • Arianna Gennari,
  • Julio M. Rios de la Rosa,
  • Erwin Hohn,
  • Maria Pelliccia,
  • Enrique Lallana,
  • Roberto Donno,
  • Annalisa Tirella and
  • Nicola Tirelli

Beilstein J. Nanotechnol. 2019, 10, 2594–2608, doi:10.3762/bjnano.10.250

Graphical Abstract
  • ; the former can address a nanoparticle to cell surface receptors such as CD44, the second allows both for entrapment of nucleic acids and for an endosomolytic activity that facilitates their liberation in the cytoplasm. Here, we have systematically compared nanoparticles prepared either A) through a
  • more easily reversible. Finally, the two processes were similar in terms of the presence of unbound HA. CD44, the HA main biological target, is a saturable receptor [28][29], and the initial binding of HA species with molecular weights greater than 30 kDa to CD44 is described as essentially
  • particles displaying an HA corona are also the least compact, which corroborates the above hypothesis for the corona formation (small compact particles connected by loosely bound HA). Evaluation of CD44-targeted delivery of siRNA One of the most fundamental aspects to a successful intracellular siRNA
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2019

Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells

  • Liga Saulite,
  • Karlis Pleiko,
  • Ineta Popena,
  • Dominyka Dapkute,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2018, 9, 321–332, doi:10.3762/bjnano.9.32

Graphical Abstract
  • , thymus, skin, adipose tissue, umbilical cord and placenta [5]. MSCs express CD105 (SH2 or endoglin), CD73 (SH3 and SH4), CD106 (VCAM-1), CD44 (hyaluronic acid receptor), CD90 (Thy 1.1), CD29, CD146 and CD166 surface markers and can be induced to differentiate in vitro into diverse lineages of mesodermal
  • bone marrow MSCs where CD29, CD44, CD73, CD90, and CD105 expression decreased after 7 days in 3D culture. To the contrary, haematopoietic marker CD34 and CD45 expression was increased [41]. CD90 is one of the key markers used for MSC characterisation [24]. In our hands Hoechst, 3,3
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2018

Nano-engineered skin mesenchymal stem cells: potential vehicles for tumour-targeted quantum-dot delivery

  • Liga Saulite,
  • Dominyka Dapkute,
  • Karlis Pleiko,
  • Ineta Popena,
  • Simona Steponkiene,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2017, 8, 1218–1230, doi:10.3762/bjnano.8.123

Graphical Abstract
  • and dental pulp. According to current understanding, MSCs are defined as adherent cells with a spindle-like morphology, expressing CD105 (SH2 or endoglin), CD73 (SH3 and SH4), CD106 (VCAM-1), CD44 (hyaluronic acid receptor), CD90 (Thy 1.1), CD29, CD146 and CD166 surface markers [7][8]. MSCs can be
  • . There were successful attempts to use a similar quantum dot–chlorin e6 complex in photodynamic cancer therapy [15]. Another study has shown that QDs, conjugated with antibodies against CD44, a marker of cancer stem-like cells, can be selectively engulfed by breast cancer cells [16]. Such surface
PDF
Album
Full Research Paper
Published 07 Jun 2017
Other Beilstein-Institut Open Science Activities