Search results

Search for "CEB" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • efficiency. As a direct radiation detector, we consider using the cold-electron bolometer (CEB) concept [11][12]. These bolometers have high sensitivity with background-limited operation [13][14][15], a broad operating frequency range, as well as immunity to spurious cosmic rays [16]. Since CEB sizes are of
  • field-effect transistor (JFET) or SQUID readout. The principal advantage of these CEB-based detectors over TESs [19] is the effect of direct electron cooling, when electrons with high energy are removed from a nanoabsorber, leaving only the quasiparticles with low energy and, accordingly, low electron
  • ] (Figure 1a). The basic element of the receiving matrix is a dipole bow-tie antenna, in the gap of which the CEB is embedded (Figure 1b). This matrix is located on a silicon substrate, which is 260 µm thick. Since the operation of the CEB in the matrix is assumed to be in the voltage bias mode, the
PDF
Album
Full Research Paper
Published 04 Jan 2024

Efficiency of electron cooling in cold-electron bolometers with traps

  • Dmitrii A. Pimanov,
  • Vladimir A. Frost,
  • Anton V. Blagodatkin,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 896–901, doi:10.3762/bjnano.13.80

Graphical Abstract
  • determined by solving heat balance equations with account of the leakage current, sixth power of temperature in the whole temperature range, and the Andreev current using numerical methods and an automatic fit algorithm. Keywords: CEB; cold-electron bolometer; electron cooling; noise equivalent power
  • from 256 to 48 mK with an unavoidable threshold of 42 mK due to the residual Andreev current. For our measurements, new samples with CEB arrays were deposited, using the equipment of the Center for Quantum Technologies at NNSTU n.a. R.E. Alekseev. These samples have normal metal traps, as well as
  • solves the equations of the stationary CEB theory [16]. We use the approach based on solving the heat balance equation [7]: where PN is Joule heating in the absorber. is the heat flux between electron and phonon subsystems, taken with the sixth power [17] due to low electron temperature in our
PDF
Album
Full Research Paper
Published 07 Sep 2022

Numerical modeling of a multi-frequency receiving system based on an array of dipole antennas for LSPE-SWIPE

  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Dmitrii A. Pimanov,
  • Ekaterina A. Matrozova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 865–872, doi:10.3762/bjnano.13.77

Graphical Abstract
  • ) [5][6] integrated into the dipole antennas. The advantages of CEB over other types of bolometers are, in particular, their high sensitivity with background-limited operation [6][7][8] and a wide dynamic range. These qualities are largely determined by the presence of an internal self-cooling of the
  • electronic subsystem of the CEB absorber [6][7][8]. Another key advantage for balloon and space missions is the high immunity of CEB against cosmic rays [9] due to a double protection given by the extremely small volume of the absorber and decoupling of electron and phonon systems. One of the advantages of
  • for CEB at high frequencies. In the process of numerical simulation, we calculated the dependence of the power, Pi, released on the active resistance of the i-th RC-chain of the array of receiving cells, on the frequency of the incident radiation, and the total power in all receiving cells: The
PDF
Album
Full Research Paper
Published 01 Sep 2022

Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance

  • Giulia Tuci,
  • Andree Iemhoff,
  • Housseinou Ba,
  • Lapo Luconi,
  • Andrea Rossin,
  • Vasiliki Papaefthimiou,
  • Regina Palkovits,
  • Jens Artz,
  • Cuong Pham-Huu and
  • Giuliano Giambastiani

Beilstein J. Nanotechnol. 2019, 10, 1217–1227, doi:10.3762/bjnano.10.121

Graphical Abstract
  • Equation 3 and Equation 4: where F and F0 are the flow rates of the outlet and inlet, respectively, while CEB, CST, CTOL and CBZ correspond to the concentration of ethylbenzene, styrene, toluene and benzene. The carbon balances amounted to about 100% in all trials. Low-pressure CO2 isotherms for CTF1 (red
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2019

Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime

  • Aditya Kumar,
  • Thorsten Staedler and
  • Xin Jiang

Beilstein J. Nanotechnol. 2013, 4, 66–71, doi:10.3762/bjnano.4.7

Graphical Abstract
  • account for elastic–plastic asperity contacts, Chang (CEB model [7][8]) extended the GW model to an elastic–plastic regime assuming the volume conservation law for asperities. However, the CEB model neglects the higher plasticity of the contact in resistance to the additional tangential loading. Later
  • , Kogut and Etsion (KE model [9]) improved the CEB model by accounting for the resistance to sliding of plastically deformed asperities using the finite element method. According to them, the contact parameters, such as separation, real area of contact, and real contact pressure, are functions of the
PDF
Album
Full Research Paper
Published 28 Jan 2013
Other Beilstein-Institut Open Science Activities