Search results

Search for "CuS" in Full Text gives 15 result(s) in Beilstein Journal of Nanotechnology.

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • biocompatibility. Via the d–d energy band transition of Cu2+ ions, CuS nanoparticles can transform light into heat. Therefore, NIR-absorbing CuS NPs are being actively explored as novel photothermal agents. Again, the architectonics of the material plays a major role in the photo conversion efficiency. Flower-like
  • structures of CuS nanoparticles showed high PCE due to multiple reflections of light enhancing photon absorption. Compared to hexagonal copper sulfide nanoparticles, the flower-like structure of CuS exhibited a 50% increase in photothermal conversion efficiency. By controlling the content of Cu in core–shell
PDF
Album
Review
Published 04 Oct 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • interlayer contacts. This caused the photocatalytic reaction sites to boost, the light response to broaden, and the separation of photoinduced charge to improve. Lv et al. [99] fabricated a p–n heterojunction-based novel CuS/Bi2WO6 semiconductor photocatalyst with 2D interfacial connections of CuS over the
  • surface of Bi2WO6. The hydrothermal method was used, and it was discovered that the produced CuS/Bi2WO6 semiconductor photocatalyst had increased photocatalytic performance for the breakdown of glyphosate when exposed to visible light. Enhanced photocatalytic activity, excellent recyclability, high
  • stability of CuS/Bi2WO6 photocatalysts may be primarily due to the presence of an electrical potential at the interface, which is responsible for both the enhanced visible light absorption and the efficient segregation of photoinduced charges. This study introduced a unique 2D interfacial coupling for the
PDF
Album
Review
Published 11 Nov 2022

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • nanoparticles are due to the resonant oscillation of the surface electrons, called surface plasmons (e.g., plasmonic gold and silver nanoparticles) [38], or they are due to the energy of the band transitions (e.g., Cu2+ d–d transition in CuS nanoparticles) [39]. Under visible–NIR light irradiation, these
  • [78]. Similar to the Prussian blue nanoparticles, CuS nanoparticles display a strong absorption in the NIR region, mainly within the 900–1200 nm range, with an efficient thermal relaxation resulting from the d–d energy band transition of the Cu2+ ions. The very low production costs together with a low
  • cytotoxicity make the CuS nanoparticles a feasible alternative to the widely used gold nanoparticles for photothermally induced bacteria ablation [33][79]. Interestingly, the early publications on CuS nanoparticles focused only on the antibacterial effect of the released Cu2+ ions but no mention was made in
PDF
Album
Review
Published 31 Jul 2020

Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions

  • Vijay Tripathi,
  • Harit Kumar,
  • Anubhav Agarwal and
  • Leela S. Panchakarla

Beilstein J. Nanotechnol. 2020, 11, 1019–1025, doi:10.3762/bjnano.11.86

Graphical Abstract
  • nanoparticles of Cu and Ni and one-dimensional nanorods of CuS, ZnF2, and NiF2 protected with fluorinated amorphous carbon. We have also synthesized reduced graphene oxide and partially rolled graphene by this method. Keywords: electric discharges; microwave synthesis; nanomaterials; transmission electron
  • of Cu, Ni, und Zn nanoparticles from metal particles. Also, we can control the morphology of the nanomaterials, which has not been achieved before. ZnF2, NiF2, and CuS nanorods covered with amorphous fluorinated carbon were synthesized. We have also extended this procedure to synthesize reduced
  • amorphous carbon is shown in Figure S7d (Supporting Information File 1). The HRTEM image (Figure S7e, Supporting Information File 1) clearly shows the single-crystalline nature of the NiF2 nanorod. Interestingly, microwave treatment of copper in the presence of sulfur in Teflon yielded CuS nanorods instead
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • . Cu–S bonds can vary from the value in CuS bulk material (2.31 Å [41]) by up to +0.27 Å, in the case of adsorption at site 3, in particular the Cu4 line configuration, or by −0.15 Å, in the case of most of the adsorption configurations at site 1. Mo–S distances are found to be within +0.09 Å and −0.05
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Green and scalable synthesis of nanocrystalline kuramite

  • Andrea Giaccherini,
  • Giuseppe Cucinotta,
  • Stefano Martinuzzi,
  • Enrico Berretti,
  • Werner Oberhauser,
  • Alessandro Lavacchi,
  • Giovanni Orazio Lepore,
  • Giordano Montegrossi,
  • Maurizio Romanelli,
  • Antonio De Luca,
  • Massimo Innocenti,
  • Vanni Moggi Cecchi,
  • Matteo Mannini,
  • Antonella Buccianti and
  • Francesco Di Benedetto

Beilstein J. Nanotechnol. 2019, 10, 2073–2083, doi:10.3762/bjnano.10.202

Graphical Abstract
  • others. Natural ternary Cu–Sn–S phases populate the pseudo ternary compositional field mostly along the two CuS–SnS and Cu2S–SnS2 joints [36][44]. Their nanocrystalline counterparts have broadened X-ray diffraction peaks. This limits the discrimination of the different phases and the study of their
  • have been set to the values reported elsewhere [47]. The chemical element compositions of the samples were analyzed through an electron microprobe. The data were corrected using the Pouchou and Pichoir (PAP) matrix correction [48][49]. We exploited a CuS (covellite) standard to better estimate the Cu/S
  • associated phase. Two factors should be considered: 1) the difference between the atomic percentage of Cu and S in the CuS standard is systematically close to 3%; 2) the segregation of Cl in an associated phase exclusively with Cu. Conversely, Sn and S are present in the main phase with the highest
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2019

Raman study of flash-lamp annealed aqueous Cu2ZnSnS4 nanocrystals

  • Yevhenii Havryliuk,
  • Oleksandr Selyshchev,
  • Mykhailo Valakh,
  • Alexandra Raevskaya,
  • Oleksandr Stroyuk,
  • Constance Schmidt,
  • Volodymyr Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2019, 10, 222–227, doi:10.3762/bjnano.10.20

Graphical Abstract
  • sulfide Cu2ZnSnS4 (CZTS); CuS; Cu-Sn-S; kesterite; phonon; pulsed light crystallization; Raman spectroscopy; secondary phase; SnS; Introduction Affordable and non-toxic solar energy materials having a high absorption coefficient and a bandgap in the solar illumination range are an ever-growing research
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2019

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
PDF
Album
Review
Published 23 Apr 2015

A simple approach to the synthesis of Cu1.8S dendrites with thiamine hydrochloride as a sulfur source and structure-directing agent

  • Xiaoliang Yan,
  • Sha Li,
  • Yun-xiang Pan,
  • Zhi Yang and
  • Xuguang Liu

Beilstein J. Nanotechnol. 2015, 6, 881–885, doi:10.3762/bjnano.6.90

Graphical Abstract
  • Bi2S3 without a template [11]. Li et al. demonstrated that L-cysteine could assist the formation of snowflake-like patterns and flower-like microspheres as well as porous hollow microsphere CuS structures [12]. Thiamine, abundant and inexpensive, contains one sulfur atom and is supposed to be used as a
  • . Five diffraction peaks are indexed to the digenite Cu1.8S phase (JCPDS card, File No. 47-1748). The absence of peaks corresponding to other phases of copper sulfide, such as CuS, Cu1.75S, Cu1.95S, Cu2S, and materials related to the precursors and copper oxides indicates the purity of the product. The
PDF
Album
Full Research Paper
Published 01 Apr 2015

Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures

  • Alexander G. Milekhin,
  • Nikolay A. Yeryukov,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Victor A. Gridchin,
  • Evgeniya S. Sheremet and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2015, 6, 749–754, doi:10.3762/bjnano.6.77

Graphical Abstract
  • str. 2, Novosibirsk 630090, Russia Novosibirsk State Technical University, pr. Karl Marx, 20, Novosibirsk, 630092, Russia Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz, Germany 10.3762/bjnano.6.77 Abstract We present the results of a Raman study of optical phonons in CuS
  • nanocrystals (NCs) with a low areal density fabricated through the Langmuir–Blodgett technology on nanopatterned Au nanocluster arrays using a combination of surface- and interference-enhanced Raman scattering (SERS and IERS, respectively). Micro-Raman spectra of one monolayer of CuS NCs deposited on a bare Si
  • substrate reveal only features corresponding to crystalline Si. However, a new relatively strong peak occurs in the Raman spectrum of CuS NCs on Au nanocluster arrays at 474 cm−1. This feature is related to the optical phonon mode in CuS NCs and manifests the SERS effect. For CuS NCs deposited on a SiO2
PDF
Album
Full Research Paper
Published 17 Mar 2015

Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: Morphological, optical and electrical properties

  • Priscilla Vasthi Quintana-Ramirez,
  • Ma. Concepción Arenas-Arrocena,
  • José Santos-Cruz,
  • Marina Vega-González,
  • Omar Martínez-Alvarez,
  • Víctor Manuel Castaño-Meneses,
  • Laura Susana Acosta-Torres and
  • Javier de la Fuente-Hernández

Beilstein J. Nanotechnol. 2014, 5, 1542–1552, doi:10.3762/bjnano.5.166

Graphical Abstract
  • semiconductor due to its stoichiometric variety usually depicted as CuxS. Copper-rich sulfides (Cu2S), CuxS with x = 0.03, 0.2, 0.25, and CuS are widely reported [8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27]. The stoichiometric ratio can be tailored by changing the concentration
  • copper sulfide synthesized in an aqueous solution has a Cu/S ratio of 1.48 ± 0.03, close to the 1:1 ratio of CuS [18]. The organic CuxS samples show the following Cu/S ratios: 1.58 ± 0.02 for the sample at 220 °C, 1.92 ± 0.05, and 1.83 ± 0.08 for crystalline chalcocite/digenite at 230 and 240 °C
  • (Cu1.8S), which is in agreement to the increment of crystal size. This phenomenon is related to the free charges due to the copper deficiency in the samples. For example, the maximum absorbance band has been reported at 450 nm for Cu2S, while it is observed at longer wavelength (950 nm) for CuS [36]. It
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2014

Functionalized nanostructures for enhanced photocatalytic performance under solar light

  • Liejin Guo,
  • Dengwei Jing,
  • Maochang Liu,
  • Yubin Chen,
  • Shaohua Shen,
  • Jinwen Shi and
  • Kai Zhang

Beilstein J. Nanotechnol. 2014, 5, 994–1004, doi:10.3762/bjnano.5.113

Graphical Abstract
  • hydrogen production. Both CuGa2In3S8 (1.91 eV) and AgGa2In3S8 (2.27 eV) showed a quite high photocatalytic activity [62]. Chen and co-workers synthesized hierarchical ZnS–In2S3–CuS nanospheres with a nanoporous structure. A high QE of 22.6% at 420 nm is achieved without loading cocatalysts due to their
PDF
Album
Review
Published 09 Jul 2014

One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals – a hydrothermal approach

  • Vincent Tiing Tiong,
  • John Bell and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2014, 5, 438–446, doi:10.3762/bjnano.5.51

Graphical Abstract
  • precursor solution without TGA prior to hydrothermal reaction reveals that CuS (JCPDS 6-0464) instead of Cu2−xS (x = 0–0.2) is formed (Figure 7). This confirms the reduction role played by TGA in the hydrothermal reaction system. We believe that the initially formed Cu2−xS nanocrystals in the precursor
PDF
Album
Full Research Paper
Published 09 Apr 2014
Other Beilstein-Institut Open Science Activities