Search results

Search for "SARS-CoV-2" in Full Text gives 11 result(s) in Beilstein Journal of Nanotechnology.

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • , polyethylene glycol (PEG) lipids, and ionizable synthetic lipids (ALC-0315 from BioNTech-Pfizer and SM-102 from Moderna Therapeutics) for enhanced delivery of messenger RNA (mRNA) encoding the spike protein of the SARS-COV-2 virus to antigen-presenting cells [82]. These vaccines were approved by the FDA
PDF
Album
Review
Published 27 Mar 2024

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • in vivo and even more to the clinics often fails and only a limited number of products make it to the market. This holds true even though Comirnaty® and Spikevax® were approved during the SARS CoV-2 pandemic using lipid nanoparticle (NPs) formulations underlining their potential [5][6][7]. By
PDF
Album
Perspective
Published 23 Nov 2023

A mid-infrared focusing grating coupler with a single circular arc element based on germanium on silicon

  • Xiaojun Zhu,
  • Shuai Li,
  • Ang Sun,
  • Yongquan Pan,
  • Wen Liu,
  • Yue Wu,
  • Guoan Zhang and
  • Yuechun Shi

Beilstein J. Nanotechnol. 2023, 14, 478–484, doi:10.3762/bjnano.14.38

Graphical Abstract
  • fields of biosensors and medicine [18]. In 2022, Chen et al. demonstrated a methodology of photonic clustered regularly interspaced short palindromic repeat (CRISPR) sensing for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2 [19]. This innovative CRISPR-empowered surface plasmon
PDF
Album
Full Research Paper
Published 06 Apr 2023

New trends in nanobiotechnology

  • Pau-Loke Show,
  • Kit Wayne Chew,
  • Wee-Jun Ong,
  • Sunita Varjani and
  • Joon Ching Juan

Beilstein J. Nanotechnol. 2023, 14, 377–379, doi:10.3762/bjnano.14.32

Graphical Abstract
  • , Selangor, 43900, Malaysia School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong 10.3762/bjnano.14.32 Keywords: biocompatible nanoparticles; cancer cells; carrageenan; cytotoxic selectivity; green synthesis methods; nanobiotechnology; SARS-CoV-2; self
  • SARS-CoV-2 receptor binding domain by molecular docking” [6]. This research work showcases peptides that are capable to bind and neutralize the SARS-CoV-2 virus through molecular docking. The latest developments of the molecular docking of peptides by molecular dynamics were investigated to understand
  • infection caused by SARS-CoV-2. Another important topic covered in this thematic issue is presented in this article: “In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles” [7]. This work explores the use of pineapple waste for the synthesis of silver and
PDF
Editorial
Published 27 Mar 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • complex of CyD with soluble ACE2 (i.e., the extracellular region of the ACE2 receptor on human cells) was developed [107]. The SARS-CoV-2 virus enters human cells through the binding of its spike to ACE2. Hence, the soluble ACE2 competitively suppresses the viral infection. The primary role of CyD here is
PDF
Album
Review
Published 09 Feb 2023

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • modern medicine. Recent outbreaks of severe diseases such as Ebola, influenza, and even more so the severe acute respiratory syndrome (SARS) and the pandemic SARS-CoV-2, have tremendously increased the urgency for new concepts and materials that prevent pathogenic microbial infestation and contact-based
PDF
Album
Review
Published 08 Sep 2022

Design and selection of peptides to block the SARS-CoV-2 receptor binding domain by molecular docking

  • Kendra Ramirez-Acosta,
  • Ivan A. Rosales-Fuerte,
  • J. Eduardo Perez-Sanchez,
  • Alfredo Nuñez-Rivera,
  • Josue Juarez and
  • Ruben D. Cadena-Nava

Beilstein J. Nanotechnol. 2022, 13, 699–711, doi:10.3762/bjnano.13.62

Graphical Abstract
  • Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México Departamento de Física, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora, México 10.3762/bjnano.13.62 Abstract The novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is
  • currently one of the most contagious viruses in existence and the cause of the worst pandemic in this century, COVID-19. SARS-CoV-2 infection begins with the recognition of the cellular receptor angiotensin converting enzyme-2 by its spike glycoprotein receptor-binding domain (RBD). Thus, the use of small
  • peptides to neutralize the infective mechanism of SARS-CoV-2 through the RBD is an interesting strategy. The binding ability of 104 peptides (University of Nebraska Medical Center’s Antimicrobial Peptide Database) to the RBD was assessed using molecular docking. Based on the molecular docking results
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • studies have shown evidence that BBR and its derivatives can also fight severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a current concern worldwide [21][22][23]. The water solubility of phytochemicals plays an important role in the effectiveness of disease treatment. A poor water
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • identified pathogenic human coronavirus SARS-CoV-2 TiO2 “self-disinfecting/cleaning” surfaces appear to be a promising approach. In this regard, Khaiboullina et al. noticed that the ROS generated on the surface of nanosized TiO2 in the presence of UV radiation could destroy the human coronavirus-NL63 (HCoV
  • -NL63) through oxidative damage, suggesting a potential use to prevent surface transmission of SARS-CoV-2 as well [100]. Titania nanomaterials for drug delivery Oral and intravenous paths are primarily used for drug administration in humans; however, they have certain drawbacks. Immediately after
PDF
Album
Review
Published 14 Feb 2022

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • various bacteria and viruses including the SARS-CoV-2 was analyzed in order to understand its effectiveness as an antimicrobial agent with therapeutic efficacy and low toxicity. Further, there is the need to characterize AgNPs and quantify the content of free Ag+ for the implementation of new systematic
  • COVID-19 pandemic caused by the SARS-CoV-2 coronavirus [120]. In this context, the antiviral properties of AgNPs against PEDV [76], H1N1 [109], H3N2 [119], and RSV [117] have already been extensively tested in vitro and in vivo. Recently it has been found that these antiviral properties are also
  • effective in inhibiting SARS-CoV-2 by using AgNPs to coat facial masks [77][120]. These results are suggestive of the development of new measures in which AgNPs can be used to prevent SARS-CoV-2 infection. Biological interactions of AgNPs When in contact with human plasma, AgNPs adsorb biomolecules such as
PDF
Album
Supp Info
Review
Published 14 May 2021

Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy

  • Natalie Frese,
  • Patrick Schmerer,
  • Martin Wortmann,
  • Matthias Schürmann,
  • Matthias König,
  • Michael Westphal,
  • Friedemann Weber,
  • Holger Sudhoff and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 172–179, doi:10.3762/bjnano.12.13

Graphical Abstract
  • compensation capability, the HIM can image insulating biological samples without additional conductive coatings. Here, we present an exploratory HIM study of SARS-CoV-2 infected Vero E6 cells, in which several areas of interaction between cells and virus particles, as well as among virus particles, were imaged
  • . The HIM pictures show the three-dimensional appearance of SARS-CoV-2 and the surface of Vero E6 cells at a multiplicity of infection of approximately 1 with great morphological detail. The absence of a conductive coating allows for a distinction between virus particles bound to the cell membrane and
  • bioimaging, especially for the imaging of interactions between viruses and their host organisms. Keywords: bioimaging; cell membrane; charge compensation; helium ion microscopy; SARS-CoV-2; Vero E6 cells; Introduction The last decade of helium ion microscopy (HIM) was characterized by a rapid exploration
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021
Other Beilstein-Institut Open Science Activities