Search results

Search for "SEM" in Full Text gives 975 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods

  • Veaceslav Ursaki,
  • Tudor Braniste,
  • Victor Zalamai,
  • Emil Rusu,
  • Vladimir Ciobanu,
  • Vadim Morari,
  • Daniel Podgornii,
  • Pier Carlo Ricci,
  • Rainer Adelung and
  • Ion Tiginyanu

Beilstein J. Nanotechnol. 2024, 15, 490–499, doi:10.3762/bjnano.15.44

Graphical Abstract
  • produced material is investigated by scanning electron microscopy (SEM), while its crystalline and optical qualities are assessed by X-ray diffraction (XRD) analysis and photoluminescence (PL) spectroscopy, respectively. We demonstrate possibilities for controlling the composition and the crystallographic
  • sensor applications. Keywords: aeromaterial; crystallographic structure; luminescence; physical vapor transport; scanning electron microscopy (SEM); X-ray diffraction (XRD); Introduction Porous materials represent a class of solid-state networks widely used in adsorptive and photocatalytic removal of
  • 10 × 10 mm2 to prepare 2 mm thick sample tablets. In order to increase the mechanical stability, the tablets with a density of 0.5 g/cm3 were annealed at 1000 °C for 1 h in air. Morphology analysis was carried out with a VEGA TESCAN 5130 SEM instrument equipped with an EDX detector from Oxford
PDF
Album
Full Research Paper
Published 02 May 2024

Photocatalytic degradation of methylene blue under visible light by cobalt ferrite nanoparticles/graphene quantum dots

  • Vo Chau Ngoc Anh,
  • Le Thi Thanh Nhi,
  • Le Thi Kim Dung,
  • Dang Thi Ngoc Hoa,
  • Nguyen Truong Son,
  • Nguyen Thi Thao Uyen,
  • Nguyen Ngoc Uyen Thu,
  • Le Van Thanh Son,
  • Le Trung Hieu,
  • Tran Ngoc Tuyen and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 475–489, doi:10.3762/bjnano.15.43

Graphical Abstract
  • Tristar-3030 system (Micromeritics, USA). The magnetic properties were measured on a Micro Sense vibrating-sample magnetometer (VSM) at room temperature. Scanning electron microscopy (SEM) observations and energy-dispersive X-ray elemental mapping (EDX mapping) were carried out on a Hitachi S-4800 FESEM
  • . Weight losses are observed between 200 and 800 °C, and the material remains stable at higher temperatures. The significant loss from 200 to 700 °C of around 50.92% is attributed to GQDs. These results show that the equation illustrating the synthesis of CF/GQDs can be written as follows: SEM images of
  • curves of CF/GQDs-200. SEM images of (a) CF/GQD-140, (b) CF/GQD-180, and (c) CF/GQD-200; TEM observations and corresponding particle size distribution of (d) CF and (e) CF/GQDs-200. EDX-mapping of CF/GQDs-200. (a) Electron microscopy image, (b) EDX spectrum, (c) carbon mapping, (d) oxygen mapping, (e
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2024

Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems

  • Hsuan-Ang Tsai,
  • Tsai-Miao Shih,
  • Theodore Tsai,
  • Jhe-Wei Hu,
  • Yi-An Lai,
  • Jui-Fu Hsiao and
  • Guochuan Emil Tsai

Beilstein J. Nanotechnol. 2024, 15, 465–474, doi:10.3762/bjnano.15.42

Graphical Abstract
  • ., Ltd.) for 10 min. The collection was vacuum-dried to obtain DCS nanocrystals. Characterization of DCS nanocrystals The DCS nanocrystals were analyzed via scanning electronic microscopy (SEM, JEOL Ltd.) and X-ray powder diffraction (XRPD, Bruker AXS GmbH). For SEM, commercial DCS was spreaded onto a
  • antisolvent, and the mixing conditions. During precipitation, different solvents can affect the size, the structure, and the stability of polymorphous particles. To confirm the morphology of DCS nanocrystals, SEM and XRPD analyses were applied for the examination of particle size and structure, respectively
  • stability of the DCS nanocrystals used in this study were confirmed by SEM and XRPD before the experiments. The excipient compatibility study and the pH effect on DCS stability The objective of the DCS excipient compatibility test (Table 1) was to determine the best excipient, the optimal pH range, the best
PDF
Album
Full Research Paper
Published 25 Apr 2024

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • qualitative agreement with the experimental observations. As a demonstration, the proposed method is applied to a carbon FEBID structure whose sidewall is etched using FEBIE with water in an SEM, using SE signal monitoring to determine when a vertical sidewall has been achieved. Results Sidewall slope
  • sidewall. This suggests that etching can be carried out at any position on the sidewall if the right dose can be applied to make it vertical. From a practical point of view, it would be advantageous if this entire process, etching as well as imaging, could be implemented in situ in the SEM. The above
  • also been carried out in situ in an SEM. Making use of the phenomenon of enhanced SE emission from an edge, the evolution of the sidewall angle during etching was continuously monitored using the SE signal. It has been demonstrated that this technique is sufficiently sensitive to determine the dose at
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate

  • Elyad Damerchi,
  • Sven Oras,
  • Edgars Butanovs,
  • Allar Liivlaid,
  • Mikk Antsov,
  • Boris Polyakov,
  • Annamarija Trausa,
  • Veronika Zadin,
  • Andreas Kyritsakis,
  • Loïc Vidal,
  • Karine Mougin,
  • Siim Pikker and
  • Sergei Vlassov

Beilstein J. Nanotechnol. 2024, 15, 435–446, doi:10.3762/bjnano.15.39

Graphical Abstract
  • the results from the scheme 1. Approximately one hour waiting time between cycles was chosen to give enough time for taking series of scanning electron microscopy (SEM, FEI, Nanosem 450) images after each heating cycle. Additionally, a separate series of transmission electron microscopy (TEM
  • number of split events per length of either adhered or suspended part. The number of splits was calculated from SEM images of the large areas (approx. 120 × 80 µm) taken with maximum picture resolution (6144 × 4415). This ensured that there was no bias in choosing individual NWs for analysis, but all NWs
  • significant bending in the suspended part in the heating scheme 2. The onset temperature of this phenomenon is difficult to determine as the deformation can be below the detection limits of SEM. Moreover, in SEM we only see the 2D projection normal to the electron beam. If NWs are bent out of the substrate
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Potential of a deep eutectic solvent in silver nanoparticle fabrication for antibiotic residue detection

  • Le Hong Tho,
  • Bui Xuan Khuyen,
  • Ngoc Xuan Dat Mai and
  • Nhu Hoa Thi Tran

Beilstein J. Nanotechnol. 2024, 15, 426–434, doi:10.3762/bjnano.15.38

Graphical Abstract
  • pattern of the Ag NPs-DES thin film. (A) SEM images of Ag NPs-DES. (B) XRF mapping of the Ag NPs-DES thin film with pink dots representing silver. (A) SERS performance of the Ag NPs-DES substrate in detecting different concentrations of NFT. (B) Linear fit of −log C and peak intensities at 1580 and 1321
PDF
Album
Full Research Paper
Published 16 Apr 2024

Insect attachment on waxy plant surfaces: the effect of pad contamination by different waxes

  • Elena V. Gorb and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 385–395, doi:10.3762/bjnano.15.35

Graphical Abstract
  • ], where cryo-SEM was applied for the examination of plant surfaces, these projections were considered as round or angular tubules with dendrite-like branches on their tops. In the present study, we follow the latter opinion and treat B. oleracea wax projections as tubules bearing apical filamentous
  • subsequently attach to a smooth surface after having a previous contact with a waxy plant surface. In combination with our SEM data on contaminated beetle feet, the above outcomes of the force tests indicated that the contamination of pads by the plant wax is responsible for the attachment force reduction on
  • , experiments with all waxy plant surfaces (d.f. = 44) and (2) data obtained from five test insects on each plant surface separately (d.f. = 4). Scanning electron microscopy (SEM) micrographs of waxy plant surfaces in the young stem of Acer negundo (a) and adaxial (upper) leaf sides of Aloe vera (b), Aquilegia
PDF
Album
Full Research Paper
Published 11 Apr 2024

Modulated critical currents of spin-transfer torque-induced resistance changes in NiCu/Cu multilayered nanowires

  • Mengqi Fu,
  • Roman Hartmann,
  • Julian Braun,
  • Sergej Andreev,
  • Torsten Pietsch and
  • Elke Scheer

Beilstein J. Nanotechnol. 2024, 15, 360–366, doi:10.3762/bjnano.15.32

Graphical Abstract
  • device fabrication, and scanning electron microscopy (SEM) images of the devices during the fabrication process are presented in Supporting Information File 1. In most reported works, the nanowires were deposited in all pores of the AAO templates [18][19][20][21]. Additional etching steps or coating
  • . Therefore, the fabrication process of 3D devices becomes easier. Figure 2a shows a SEM image of nanowires after removing the AAO template and top electrodes by diluted NaOH solution. Each nanowire consists of multiple NiCu layers of different thickness that are separated by thin Cu layers (denoted as Cu
  • spacer in the following). From the bottom to the top, both NiCu layers and Cu spacers get thinner, which can be caused by the dynamical change of the ion concentration in the holes. Eventually, the thickness of the Cu spacers becomes zero and no well-defined Cu spacer can be observed. Through the SEM
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • films was studied in cross-section view mode using a field-emission scanning electron microscope (FESEM) (Carl Zeiss). The samples were cleaved using a diamond cutter and placed on the SEM sample holder with the cross-sectional area facing the electron beam. All SEM images were captured using 5 keV
  • annealed films show bigger grain sizes compared to the respective as-deposited ones. It is noted that the WOx films deposited on glass substrates show similar trends in grain sizes with film thickness (data not shown here). Additionally, cross-sectional SEM images of 60 and 120 nm thick films are depicted
  • the AFM and SEM analysis, henceforth, the films will be referred to as NS-WOx films. Regarding the optical properties, the transmittance spectra of the as-deposited NS-WOx films on glass show the highest transmittance (more than 90%) over the spectral range of 300 to 1200 nm for 6 nm films, which
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Comparative electron microscopy particle sizing of TiO2 pigments: sample preparation and measurement

  • Ralf Theissmann,
  • Christopher Drury,
  • Markus Rohe,
  • Thomas Koch,
  • Jochen Winkler and
  • Petr Pikal

Beilstein J. Nanotechnol. 2024, 15, 317–332, doi:10.3762/bjnano.15.29

Graphical Abstract
  • manufactured as a standard white pigment grade, which would be significantly inferior if more than 50% of its particles were below 100 nm in diameter. In other papers, samples of the same materials were measured using scanning electron microscopy (SEM) and found not to meet the EU classification for
  • round-robin test in 2023 by three laboratories (KRONOS INT. Inc., Precheza a.s, and Venator). The results are summarised in this publication. Each laboratory followed its own routine procedure to prepare samples, make SEM images, and measure several particle size parameters including the smallest
  • samples in 2023. Three of the reported measurements were made by SEM and three by TEM. The following three images (Figures 3–5) illustrate typical images used for the different methods. A top-view SEM image is shown in Figure 3 (Precheza M2, Venator M3), Figure 4 is an example of a TEM image (RCPTM, P1
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • with PDMS. Parts of the experimental procedure are shown in Figure S6 (Supporting Information File 1). Characterization The surface morphology of the samples prepared in this study was examined through the utilization of scanning electron microscopy (SEM) (TESCAN MIRA3, Czech Republic) and an optical
  • . SEM images of tunnel cracks with different width formed under strain. (a) SEM images of the metal crack strain sensor with no cracks. (b) Cracks form. (c) Cracks grow. (d) Cracks widen. Strain-sensing performance of the metal crack strain sensor. (a) Relative resistance change as a function of the
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • -resolution analytical electron microscope (FE-SEM, Thermo Scientific, Apreo 2S LoVac) and a scanning transmission electron microscope (STEM, Phillips XL, 30 ESEM-FEG/EDAX) operating at 120 kV acceleration voltage. The structure of the nanoparticles was analyzed by X-ray diffraction (XRD, PANalytical, Xpert
  • a solvothermal technique in a stainless steel reactor at 200 °C for 6 h. According to the results of FE-SEM and STEM examinations, the Fe3O4 NPs are spherical, as depicted in Figure 1a–c. When examining the STEM size distribution, it was observed that Fe3O4 NPs were efficiently synthesized with an
  • ]. During this process in an alkaline environment, PDA polymerizes into its oxide form. As a result, the nanostructure undergoes coating with PDA [47]. The average distribution of PDA coating sizes and thicknesses was determined using FE-SEM size analysis. In Figure 1c, the average size of bare Fe3O4 NPs
PDF
Album
Full Research Paper
Published 28 Feb 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • by setting the deposition height to 10 μm. Defocusing of the electron spot during vertical growth naturally forms a narrowing conical structure. At the apex of this cone, we routinely achieve a curvature radius of less than 10 nm, as verified by the SEM image in Figure 6c. Finally, we deposit a thin
  • direction. (a) Scanning electron microscope (SEM) image of a fabricated sensor seen from an angled topside view. The cantilever is formed from a Si-N plate protruding from and supported by a Si substrate. A thin film of Nb-Ti-N is deposited on top of the Si-N and patterned to form the microwave resonator. A
  • inductor is placed transversely to the base of the released cantilever. (d–f) SEM images of nanowires from three different devices, showing three different nominal nanowire widths: 200, 100, and 75 nm. (g) SEM image of an underside view of the clamping line of a released cantilever using an isotropic
PDF
Album
Full Research Paper
Published 15 Feb 2024

Quantitative wear evaluation of tips based on sharp structures

  • Ke Xu and
  • Houwen Leng

Beilstein J. Nanotechnol. 2024, 15, 230–241, doi:10.3762/bjnano.15.22

Graphical Abstract
  • are currently two primary methods for obtaining the tip morphology, namely microscopic observation and blind reconstruction based on AFM images. Strahlendorff et al. [12] employed a scanning electron microscope (SEM) to evaluate the shape of the probe before and after scanning to determine tip wear
  • AFM scanning. Xue et al. [18] used SEM to study the state of the probe before and after scanning under different scanning parameters and found that good scanning parameters can be obtained under low scanning speed, large integration gain, and high set point, which significantly reduces tip wear. Su et
  • shown in Figure 6. The crest’s location in the plane view indicates potential tips of structures. Images of the AFM probes were acquired using a Thermo Fisher Scientific Quattro model scanning electron microscope system. The imaging parameters for the SEM were set to 20 kV electron beam voltage with a
PDF
Album
Full Research Paper
Published 14 Feb 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • detector was calibrated beforehand using a Faraday cup. Focused ion beam irradiation A Tescan Amber FIB-SEM was used to etch the sample surface. A Ga+ focused ion beam was used (E = 30 keV, I = 10 pA) to draw 10 μm trenches with a nominal depth of 100 nm using single line scan. This resulted in actual
  • beam of the SEM component; hence, for irradiation, the sample is tilted at 55° through the motorized compucentric stage from the default configuration to be exactly perpendicular to the ion beam. Results and Discussion Fe beam irradiation in vacuum Dry DNA origami nanotriangles deposited on Si
  • depth were drawn on the surface using a FIB-SEM. Although the lines could be clearly observed, the nanostructures could not be resolved in FIB or SEM imaging modes because of poor contrast for both and the observed sample charging during SEM imaging (Supporting Information File 1, Figure S4). Because of
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • studies: A) optical microscopy, B) scanning electron microscopy (SEM), C) AFM, and D) correlative probe and electron microscopy (CPEM). The optical contrast of graphene placed onto SiO2/Si allows us to easily distinguish between its mono-, bi-, triple, and thicker flakes layers. The values (approx. 2.5 nm
  • exposed lines for all used dose values and dwell times (Figure 1C.i–iii), whose origin we discuss further in the subsequent section of the manuscript. The SEM and in situ AFM signals (Figure 1B, Figure 1C) are integrated into CPEM data, which yields additional insight into the substrate morphology. Apart
  • be optimized to prevent unnecessary defects and reduce the detrimental impact on the underlying substrate. The optical microscope image of the graphene flake before the patterning process is shown in Figure 2A. The size of the etched lines, estimated based on SEM measurements, is usually smaller than
PDF
Album
Full Research Paper
Published 07 Feb 2024

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • were performed in both 0.1× PBS (13.7 mM of NaCl, 0.27 mM of KCl, 1 mM of Na2HPO4, and 0.18 mM of KH2PO4, pH 7.4) and animal cell culture media containing DMEM and 10% FBS. Scanning electron microscopy For scanning electron microscopy (SEM) experiments, 10 μL of F127-folate@NP was loaded on the silica
  • film for 1 min, and water was allowed to evaporate. Then, the NPs were coated with titanium and SEM images were acquired using a FE-SEM S4800 HITACHI, Japan. Loading capacity Entrapment and release of CHL and IR780 in the NPs were measured by the absorbance of CHL at 256 nm and IR780 at 780 nm using
  • DLS and PDI increased to approx. 280 nm and 0.24, respectively. The NPs were still well dispersed in cell culture media; however, the size increase suggested the adsorption of FBS proteins onto the NPs. The SEM results (Figure 1B) showed the actual size of the nanoparticles, which had a round shape of
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • investigated by 29Si NMR, and it was found that the hydrolysis and condensation of VTES proceed more completely in basic conditions than in acidic conditions. The silica content of GO-VTES(b) was 43%, which is higher than that of GO-VTES(a) (8%). Morphology of silica was observed by SEM. The DPNR/GO-VTES
  • gravimetric analysis (TGA) of the samples was performed on a TA Q500 instrument. The temperature was increased at a heating rate of 10 °C /min from room temperature to 900 °C in air atmosphere. The morphology of the DPNR/GO-VTES was observed with field-emission scanning electron microscopy (FE-SEM) performed
  • efficiently attached to GO, and the attachment was more efficient in basic conditions rather than acidic conditions. Scanning electron microscopy images Figure 8 shows SEM images for GO-VTES(a) and GO-VTES(b). As can be seen, silica was produced with a size of approx. 50 nm for GO-VTES(a) and GO-VTES(b). It
PDF
Album
Full Research Paper
Published 05 Feb 2024

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • materials in phase 2. A simulated annealing fitting algorithm was employed. The PAAO structure (Figure 1a) was confirmed using field-emission scanning electron microscopy (FE-SEM-4800, Hitachi, Tokyo, Japan). The relationship between thickness measurements using SEM and optical interferometry has been
  • Innovation Program under TRANSLATE project (Grant agreement: 964251). A. J. acknowledges support from European Regional Development Fund for postdoctoral project ”Patterned hybrid multilayer films for optical sensors” (no. 1.1.1.2/VIAA/4/20/615). (a) Scanning electron microscopy (SEM) micrograph showing top
PDF
Album
Full Research Paper
Published 31 Jan 2024

Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: implications for widespread adoptions

  • Pathirannahalage Sahan Samuditha,
  • Nadeesh Madusanka Adassooriya and
  • Nazeera Salim

Beilstein J. Nanotechnol. 2024, 15, 115–125, doi:10.3762/bjnano.15.11

Graphical Abstract
  • light scattering (DLS), and scanning electron microscopy (SEM). The effect of ZnO NPs (70 nm) on R. sativus grown in coir was evaluated. The application of 1,000 mg/L of ZnO NPs resulted in a significant increase (p < 0.05) in soluble protein content, carbohydrates, chlorophyll a (Chl-a), chlorophyll b
  • synthesized ZnO NPs were characterized via several techniques such as powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, solid-UV–vis spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM). Then the potential phytotoxicity of the synthesized ZnO NPs
  • (Figure 1c) shows significant absorption peaks at 545, 718, 902, 2028, and 2159 cm−1. The UV–vis spectrum of synthesized ZnO-NPs displays a broad band at 362 nm (Figure 1d). The SEM images (Figure 1e) confirmed that ZnO NPs have spherical morphology with an average diameter of 70 nm. Phytotoxicity of ZnO
PDF
Album
Full Research Paper
Published 23 Jan 2024

New application of bimetallic Ag/Pt nanoplates in a colorimetric biosensor for specific detection of E. coli in water

  • Azam Bagheri Pebdeni,
  • Mohammad N. AL-Baiati and
  • Morteza Hosseini

Beilstein J. Nanotechnol. 2024, 15, 95–103, doi:10.3762/bjnano.15.9

Graphical Abstract
  • detection is described using a silver/platinum nanoplate (Ag/Pt NPL) that interacts with an oligonucleotide aptamer as a bioreceptor. The size of the Ag/Pt NPLs was about 42 nm according to the FE-SEM images. The EDS result indicates that a thin layer of Pt ions was coated on the surface of the Ag NPLs
  • microscopy (FE-SEM) was used to investigate the form and shapes of NPLs. The size of the NPLs is approx. 42 nm. Figure 1a shows a combination of truncated triangular and circular plates of Ag/Pt NPLs. The NPLs were evenly distributed and shaped in the form of discs or triangles. Energy-dispersive X-ray
  • that, one drop of the E. coli-contaminated sample was put onto a paper chip. The final stage in the paper evaluation was to add 6 µL of H2O2 and 6 µL of TMB to paper chips. The ImageJ software was utilized to evaluate the intensity of the resulting blue color. a) The SEM image AND b) EDS analysis of Ag
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2024

Study of the reusability and stability of nylon nanofibres as an antibody immobilisation surface

  • Inés Peraile,
  • Matilde Gil-García,
  • Laura González-López,
  • Nushin A. Dabbagh-Escalante,
  • Juan C. Cabria-Ramos and
  • Paloma Lorenzo-Lozano

Beilstein J. Nanotechnol. 2024, 15, 83–94, doi:10.3762/bjnano.15.8

Graphical Abstract
  • measured as relative fluorescence unit (RFU) (index explained in the Experimental section). Results are expressed as the mean RFU of the replicates, and the variation is expressed as the standard error of the mean (SEM). When the immunocapture system had been reconstituted after the stripping procedure
PDF
Album
Full Research Paper
Published 15 Jan 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • observed by scanning electron microscopy (SEM, Figure 1). The BBR powder appeared as aggregates of rods in the micrometer size (Figure 1a), while BBR NPs were formed as nanoscale rectangles (Figure 1b). The electrospun PLA nanofibers showed bead-free and uniform morphology with fiber diameter in the range
  • conducted for 6 h to obtain the PLA, BBR/PLA, and BBR NPs/PLA nanofiber scaffolds. Characterization of prepared scaffolds The morphology of PLA and BBR-loaded PLA nanofiber scaffolds was observed by a scanning electron microscope (JSM-6510LV). Fiber diameters were measured from the SEM images by using the
  • inverted microscope every 24 h. Statistical analysis The data were reported as mean values ± standard deviations. Statistical analysis of antibacterial data was performed using one-way analysis of variance (ANOVA). A p-value of less than 0.05 was considered statistically significant. (a) SEM image of BBR
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • structures were examined in terms of their morphology, electrical properties, and catalytic layers in the OER process. Results and Discussion Characterisation of hydrogel-based polymer composites with dispersed catalytic and conductive particles Scanning electron microscopy (SEM) analysis of hydrogel samples
  • temperature above LCST results in shrinkage of the hydrogel structure and formation of inhomogeneities. Such a hydrogel ceases to be transparent and loses most of its water [42]. Morphological and physicochemical characterisation Scanning electron microscopy was performed with an FE-SEM FEI Quanta FEG 250 at
  • 1 V to 1.7 V vs RHE). SEM micrographs of freeze-dried nanostructures of pure (a, d) and composite hydrogel samples: Hgel-MCO-cCB 1:3 (b, e) and Hgel-MCO-cCB 1:6 (c, f). EDS analysis of hydrogel composites: Hgel-MCO (a, d, g), Hgel-MCO-cCB 1:3 (b, e, h), Hgel-MCO-cCB 1:6 (c, f, i). Transmittance plot
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • sensitivity. Scanning electron microscopy (SEM) images of the sample LSPE VB 210/240 SINS1 No. 43 deposited at NNSTU were obtained using an electron microscope at the Collective Use Center of the IPM RAS (Figure 4a,b). The dimensions of the junctions can be precisely measured using SEM and compared with the
  • a substrate thickness of 0.29 mm seem to be closer to the experimental results, see Measurement results section below. (a) Design of the sample of LSPE VB 210/240 from the SINS1 series. (b) Optical photo of the sample of LSPE VB 210/240 from the SINS1 series. (a) SEM image of the LSPE sample; bow
  • -tie antennas are visible. (b) SEM image where the required elements are painted with pseudocolors; red: normal metal absorber, green: SN contact, and blue: SIN tunnel junctions. I–V characteristics of two receiving structures of a sample receiving system from the LSPE VB 210/240 SINS1 series. Measured
PDF
Album
Full Research Paper
Published 04 Jan 2024
Other Beilstein-Institut Open Science Activities