Search results

Search for "SPM" in Full Text gives 95 result(s) in Beilstein Journal of Nanotechnology.

The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope

  • Christian Wagner,
  • Norman Fournier,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 202–209, doi:10.3762/bjnano.5.22

Graphical Abstract
  • Future Information Technology, 52425 Jülich, Germany 10.3762/bjnano.5.22 Abstract Scanning probe microscopy (SPM) plays an important role in the investigation of molecular adsorption. The possibility to probe the molecule–surface interaction while tuning its strength through SPM tip-induced single
  • rapid development of scanning probe microscopy (SPM) techniques, investigations of adsorbate–surface interactions on a single-molecule level have become possible [2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18]. Especially interesting is the possibility of probing the molecule–surface
  • interaction while tuning its strength through a well-controlled single-molecule manipulation induced by the SPM tip [6][11][19][20][21][22]. Such experiments demand special instrumentation. It has been demonstrated that the recently developed experimental setups that combine low-temperature scanning tunneling
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2014

Influence of the adsorption geometry of PTCDA on Ag(111) on the tip–molecule forces in non-contact atomic force microscopy

  • Gernot Langewisch,
  • Jens Falter,
  • André Schirmeisen and
  • Harald Fuchs

Beilstein J. Nanotechnol. 2014, 5, 98–104, doi:10.3762/bjnano.5.9

Graphical Abstract
  • atomic force microscope (Omicron LT-SPM) that was operated in frequency-modulation mode [11] under ultrahigh vacuum conditions and at a temperature of ≈5 K using a tuning fork sensor (resonance frequency f0 = 24640 Hz, spring constant k ≈ 2000 N/m) in the qPlus design [12]. The amplitude of the sensor
PDF
Album
Full Research Paper
Published 27 Jan 2014

Friction behavior of a microstructured polymer surface inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 83–97, doi:10.3762/bjnano.5.8

Graphical Abstract
  • intermittent contact mode cantilever (c = 50 Nm−1, NST-NCHF, Nascatec GmbH, Stuttgart, Germany), at ambient conditions (room temperature 24 °C, relative humidity 41%). NanoWizard® SPM software 3.3.23 (JPK Instruments) was used to obtain AFM images and NanoWizard® image processing software 3.3.25 was applied to
PDF
Album
Full Research Paper
Published 24 Jan 2014

Noise performance of frequency modulation Kelvin force microscopy

  • Heinrich Diesinger,
  • Dominique Deresmes and
  • Thierry Mélin

Beilstein J. Nanotechnol. 2014, 5, 1–18, doi:10.3762/bjnano.5.1

Graphical Abstract
  • merit factor for dominant detector noise according to Equation 55. For the stiffness of the Kolibri sensor, we use 1 MN/m, about the double of what is given in the documents from Specs [22]. The 540 kN/m is the spring constant of the entire needle which is suspended in the middle. In SPM operation, the
  • -rate SPM setups that claim to image biological processes in real-time (however in topography mode only). We emphasize that the choice of our bandwidth is our personal preference of making the compromise between bandwidth and noise. As stated above, the 30 Hz bandwidth leads to 22 mV signal fluctuation
  • resonator to cryogenic temperatures, possibly using laser cooling. These works aim at the Heisenberg limit and are not specific to scanning probe microscopy. Practical SPM systems seem to be still further away from the ultimate limit. Conclusion The dynamic behavior of an FM-KFM has been measured and
PDF
Album
Full Research Paper
Published 02 Jan 2014

Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review

  • Sidney R. Cohen and
  • Estelle Kalfon-Cohen

Beilstein J. Nanotechnol. 2013, 4, 815–833, doi:10.3762/bjnano.4.93

Graphical Abstract
  • microscopy, SPM) [21]. These developments facilitated the measurement of mechanical properties of very small volumes of materials, opening new avenues of research. Reducing dimensions to the nanoscale gave birth to new paradigms in mechanical measurements and interpretation: In addition to the increased
  • indentation depth. Indentation placement is directed by an optical view, or in some cases the indenter tip itself is used to make a higher resolution profiling scan of the surface to enable a placement in the tens of nm range. For AFM/SPM the situation is somewhat different. A calibrated displacement is
  • instrumental contribution to damping must be accounted for. These inherent instrumental properties include those of the spring (cantilever), of the electronics, and of the piezoelectric transducer. For INI, careful calibration protocols have been described to account for these [64][73]. For SPM there is no
PDF
Album
Review
Published 29 Nov 2013

Optimal geometry for a quartz multipurpose SPM sensor

  • Julian Stirling

Beilstein J. Nanotechnol. 2013, 4, 370–376, doi:10.3762/bjnano.4.43

Graphical Abstract
  • Julian Stirling School of Physics and Astronomy, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom 10.3762/bjnano.4.43 Abstract We propose a geometry for a piezoelectric SPM sensor that can be used for combined AFM/LFM/STM. The sensor utilises symmetry to provide
  • ; mechanical vibrations; scanning probe microscopy; scanning tunnelling microscopy; Introduction The heart of any scanning probe microscope (SPM) is its sensory probe. For a scanning tunnelling microscope (STM) this is simply an electrically conducting wire with an atomically sharp apex. For atomic force
  • spring constant of the LFM operation. By attaching an extra electrode, the sensor can also be used for STM, providing a truly multipurpose SPM sensor. (a) Proposed geometry of new sensor. A tungsten tip connected to the centre of a quartz bar clamped at both ends. (b) First and (c) second eigenmode of
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2013

A look underneath the SiO2/4H-SiC interface after N2O thermal treatments

  • Patrick Fiorenza,
  • Filippo Giannazzo,
  • Lukas K. Swanson,
  • Alessia Frazzetto,
  • Simona Lorenti,
  • Mario S. Alessandrino and
  • Fabrizio Roccaforte

Beilstein J. Nanotechnol. 2013, 4, 249–254, doi:10.3762/bjnano.4.26

Graphical Abstract
  • Scanning Probe Microscopy (SPM) measurements were carried out by using a Digital Instrument D3100 equipped with the Nanoscope® V controller. Local resistance measurements were carried out by using the scanning spreading resistance module (SSRM) [18][19], and cross-sectional local active-doping profiling
PDF
Album
Full Research Paper
Published 08 Apr 2013

Pinch-off mechanism in double-lateral-gate junctionless transistors fabricated by scanning probe microscope based lithography

  • Farhad Larki,
  • Arash Dehzangi,
  • Alam Abedini,
  • Ahmad Makarimi Abdullah,
  • Elias Saion,
  • Sabar D. Hutagalung,
  • Mohd N. Hamidon and
  • Jumiah Hassan

Beilstein J. Nanotechnol. 2012, 3, 817–823, doi:10.3762/bjnano.3.91

Graphical Abstract
  • resistivity of 13.5–22.5 Ω cm [16], by using scanning probe microscope (SPM) (SPI3800N/4000). The buried oxide layer in the SOI wafer was used as an insulator between the device and the handle silicon wafer, and also as the etch-stop in the wet-etching process. All predesigned oxide masks were fabricated in
PDF
Album
Full Research Paper
Published 03 Dec 2012

Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

  • Mehmet Z. Baykara,
  • Omur E. Dagdeviren,
  • Todd C. Schwendemann,
  • Harry Mönig,
  • Eric I. Altman and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2012, 3, 637–650, doi:10.3762/bjnano.3.73

Graphical Abstract
  • the second part applies the findings to determine the optimum strategies for extracting reliable information on atomic-scale chemical and physical properties of sample surfaces. Part I: Artifacts in force-field spectroscopy measurements Drift Virtually all atomic-scale scanning probe microscopy (SPM
  • angstroms per minute. In contrast, performing the experiments at low temperatures can suppress thermal drift to as little as a few angstroms per day [8]. An elegant approach to correct the effects of thermal drift in lateral directions during SPM imaging involves the use of atom-tracking and feed-forward
  • positioning methods. Atom tracking [37] comprises the determination of the drift vector by measuring the shift in the position of an individual maximum in subsequent SPM images followed by an appropriate correction of the tip location that compensates for this drift. In contrast, the feed-forward procedure
PDF
Album
Full Research Paper
Published 11 Sep 2012

Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

  • Miriam Jaafar,
  • David Martínez-Martín,
  • Mariano Cuenca,
  • John Melcher,
  • Arvind Raman and
  • Julio Gómez-Herrero

Beilstein J. Nanotechnol. 2012, 3, 336–344, doi:10.3762/bjnano.3.38

Graphical Abstract
  • on this driving signal (amplitude for DAM or frequency for FM) is used as the process variable for the topography feedback. All of the experiments described in this work have been carried out with Nanotec Electronica (http://www.nanotec.es) microscopes controlled with the SPM software package WSxM
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2012

Modeling noncontact atomic force microscopy resolution on corrugated surfaces

  • Kristen M. Burson,
  • Mahito Yamamoto and
  • William G. Cullen

Beilstein J. Nanotechnol. 2012, 3, 230–237, doi:10.3762/bjnano.3.26

Graphical Abstract
  • images on corrugated surfaces, given that many previous measurements of SiO2 appear to be under-resolved. It is likely that further high-resolution SPM studies will provide breakthroughs in problems that are currently poorly understood, such as the unusually high adhesion energy of graphene to SiO2 [15
PDF
Album
Full Research Paper
Published 13 Mar 2012

Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001)

  • Christian Held,
  • Thomas Seyller and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2012, 3, 179–185, doi:10.3762/bjnano.3.19

Graphical Abstract
  • decomposition in ultrahigh vacuum and in an argon atmosphere are compared and the respective growth mechanisms discussed. Keywords: FM-AFM; graphene; 6H-SiC(0001); KPFM; SPM; Introduction Graphene grows epitaxially on the Si face of 6H-SiC(0001) by thermal decomposition in vacuum or an inert atmosphere
PDF
Album
Full Research Paper
Published 29 Feb 2012

qPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution

  • Maximilian Schneiderbauer,
  • Daniel Wastl and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2012, 3, 174–178, doi:10.3762/bjnano.3.18

Graphical Abstract
  • sensitive to force gradients down to ≈ 5 × 10−7 Nm−1. All experiments presented here were performed under ambient conditions. For vibration isolation the microscope is mounted on a mechanical double damping stage [16]. We used the Nanonis SPM [17] control electronics and the Multipass configuration to
PDF
Album
Letter
Published 29 Feb 2012

Effect of the environment on the electrical conductance of the single benzene-1,4-diamine molecule junction

  • Shigeto Nakashima,
  • Yuuta Takahashi and
  • Manabu Kiguchi

Beilstein J. Nanotechnol. 2011, 2, 755–759, doi:10.3762/bjnano.2.83

Graphical Abstract
  • -molecule junctions were fabricated in an electrochemical cell mounted in a chamber, which was filled with high-purity N2 gas (purity >99.999%) in order to avoid any effects of oxygen and water in the air. The conductance measurements were performed by using electrochemical STM (Pico-SPM, Molecular Imaging
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2011

Nanostructured, mesoporous Au/TiO2 model catalysts – structure, stability and catalytic properties

  • Matthias Roos,
  • Dominique Böcking,
  • Kwabena Offeh Gyimah,
  • Gabriela Kucerova,
  • Joachim Bansmann,
  • Johannes Biskupek,
  • Ute Kaiser,
  • Nicola Hüsing and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2011, 2, 593–606, doi:10.3762/bjnano.2.63

Graphical Abstract
  • , the Au/TiO2 catalyst film was calcined for 1 h at 350 °C in 2 mbar O2 (O350 treatment). The Au/TiO2 film thickness was either obtained from the transmission electron microscopy (TEM) measurements (see below) or by AFM profilometry by means of a Topometrix Explorer SPM (scan range: 100 µm) in contact
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2011

Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination

  • Miriam Jaafar,
  • Oscar Iglesias-Freire,
  • Luis Serrano-Ramón,
  • Manuel Ricardo Ibarra,
  • Jose Maria de Teresa and
  • Agustina Asenjo

Beilstein J. Nanotechnol. 2011, 2, 552–560, doi:10.3762/bjnano.2.59

Graphical Abstract
  • microscope from Nanotec Electronica S. L., and the images were processed with WSxM [40]. This system has been conveniently modified to apply in situ in-plane and out-of-plane magnetic fields [14]. Since the electric field can also be varied continuously, this system can be used to obtain high resolution SPM
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2011

Towards multiple readout application of plasmonic arrays

  • Dana Cialla,
  • Karina Weber,
  • René Böhme,
  • Uwe Hübner,
  • Henrik Schneidewind,
  • Matthias Zeisberger,
  • Roland Mattheis,
  • Robert Möller and
  • Jürgen Popp

Beilstein J. Nanotechnol. 2011, 2, 501–508, doi:10.3762/bjnano.2.54

Graphical Abstract
  • , the signal enhancement in SERS and SEF is characterized by different dependencies on the distance between the analyte and metal surface. In order to establish rules for an analyte–metal-surface, distance dependent, signal enhancement, scanning probe microscopy (SPM)-based measurements in combination
  • with an optical readout were performed by several research groups: Roth et al. applied distance dependent tip-enhanced Raman spectroscopic (TERS) measurements, where SERS is combined with the SPM technique AFM (atomic force microscopy). These distance dependent TERS studies revealed that the highest
  • fluorescence enhancement was detected for distances in the range of 3–7 nm, whereas for shorter distances the molecular fluorescence was quenched [28]. Since the plasmonic behavior of a SPM probe for tip-enhanced near-field optical microscopy is comparable with that of a single metallic nanoparticle, the usage
PDF
Album
Letter
Published 30 Aug 2011

Infrared receptors in pyrophilous (“fire loving”) insects as model for new un-cooled infrared sensors

  • David Klocke,
  • Anke Schmitz,
  • Helmut Soltner,
  • Herbert Bousack and
  • Helmut Schmitz

Beilstein J. Nanotechnol. 2011, 2, 186–197, doi:10.3762/bjnano.2.22

Graphical Abstract
  • . Experimental Morphological methods used are all based on well established light and electron microscopical procedures. Mechanical tests were conducted in a nanomechanical test system capable of normal loading as well as in situ scanning probe microscopy (SPM) (TriboScope; Hysitron, Minneapolis, USA
PDF
Album
Full Research Paper
Published 30 Mar 2011

Scanning probe microscopy and related methods

  • Ernst Meyer

Beilstein J. Nanotechnol. 2010, 1, 155–157, doi:10.3762/bjnano.1.18

Graphical Abstract
  • . Scanning probe microscopy (SPM) uses probing tips to map properties, such as topography, local adhesive forces, elasticity, friction or magnetic properties. In the emerging fields of nanoscience and nanotechnology these types of microscopes help to characterize the nanoworld. In addition, local probes can
  • -scale to the micron scale of micromachinery. Mechanical actuation is used to reduce friction of these micro contacts. An important aspect of SPM is the possibility to modify surfaces. The probing tip can be either used to push or pull atoms, molecules or particles across surfaces. These experiments give
PDF
Album
Editorial
Published 22 Dec 2010

Magnetic coupling mechanisms in particle/thin film composite systems

  • Giovanni A. Badini Confalonieri,
  • Philipp Szary,
  • Durgamadhab Mishra,
  • Maria J. Benitez,
  • Mathias Feyen,
  • An Hui Lu,
  • Leonardo Agudo,
  • Gunther Eggeler,
  • Oleg Petracic and
  • Hartmut Zabel

Beilstein J. Nanotechnol. 2010, 1, 101–107, doi:10.3762/bjnano.1.12

Graphical Abstract
  • coercivity of Hc = 280 Oe at 15 K and Hc= 40 Oe at 330 K. The large increase in coercivity at low temperature is in agreement with previous reports and with the model of superparamagnetic (SPM) particles [29][30]. After the deposition of Co on top of the NP arrays, the Hc at 15 K increases to 408 Oe and 455
  • composite (red triangles), respectively. The ZFC/FC curves for the NP monolayer show the regular behavior as expected from a SPM system, i.e., a peak in the ZFC curve marking the blocking temperature, Tb ≈ 250 K, of the system and the splitting of the ZFC and FC curves near Tb. However, an important feature
PDF
Album
Full Research Paper
Published 01 Dec 2010
Other Beilstein-Institut Open Science Activities