Search results

Search for "SrTiO3" in Full Text gives 22 result(s) in Beilstein Journal of Nanotechnology.

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • , and SrTiO3), sulfates (e.g., MoS2 and Bi2S3), selenides (e.g., MoSe2 and CdSe), and phosphates (e.g., Ag3PO4) [8][9][10][11][12][13][14][15]. The bandgap of photocatalysts sensitive to visible light is smaller than 3 eV. Wide-bandgap photocatalysts can only be stimulated by ultraviolet light, which
PDF
Album
Review
Published 11 Nov 2022

Interface interaction of transition metal phthalocyanines with strontium titanate (100)

  • Reimer Karstens,
  • Thomas Chassé and
  • Heiko Peisert

Beilstein J. Nanotechnol. 2021, 12, 485–496, doi:10.3762/bjnano.12.39

Graphical Abstract
  • Tübingen, Germany 10.3762/bjnano.12.39 Abstract We study interface properties of CoPcFx and FePcFx (x = 0 or 16) on niobium-doped SrTiO3(100) surfaces using mainly X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. For all studied molecules, a rather complex, bidirectional charge
  • first monolayer on the oxide surface depends on the central metal atom of the phthalocyanine, whereas the substrate preparation has minor influence on the interaction between CoPc and SrTiO3(100). Differences of the interaction mechanism to related TiO2 surfaces are discussed. Keywords: charge transfer
  • cells, field-effect transistors (FETs), and sensors [1][2]. Possibly, one of the most extensively studied oxide material in this context is rutile titanium dioxide [3]. However, also interfaces between SrTiO3 (STO) and organic molecules are studied increasingly using both experimental [4][5] and
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2021

Observation of unexpected uniaxial magnetic anisotropy in La2/3Sr1/3MnO3 films by a BaTiO3 overlayer in an artificial multiferroic bilayer

  • John E. Ordóñez,
  • Lorena Marín,
  • Luis A. Rodríguez,
  • Pedro A. Algarabel,
  • José A. Pardo,
  • Roger Guzmán,
  • Luis Morellón,
  • César Magén,
  • Etienne Snoeck,
  • María E. Gómez and
  • Manuel R. Ibarra

Beilstein J. Nanotechnol. 2020, 11, 651–661, doi:10.3762/bjnano.11.51

Graphical Abstract
  • , Universidad de Zaragoza, 50018 Zaragoza, Spain 10.3762/bjnano.11.51 Abstract We studied in detail the in-plane magnetic properties of heterostructures based on a ferroelectric BaTiO3 overlayer deposited on a ferromagnetic La2/3Sr1/3MnO3 film grown epitaxially on pseudocubic (001)-oriented SrTiO3, (LaAlO3)0.3
  • epitaxially have grown BTO/LSMO bilayers on SrTiO3 (STO), (LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) and LaAlO3 (LAO) single-crystal substrates where we choose for all of them the pseudocubic (001) direction perpendicular the substrate surface. We have grown the samples by pulsed-laser deposition and systematically
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2020

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • characterization of the work function using the example of artificially formed crystalline titanium monoxide (TiO) nanowires on strontium titanate (SrTiO3) surfaces, providing a sharp atomic interface. The measured value of 3.31(21) eV is the first experimental work function evidence for a cubic TiO phase, where
  • obtaining work function and conductivity maps on the same area by combining noncontact and contact modes of atomic force microscopy (AFM). As most of the real applications require ambient operating conditions, we have additionally checked the impact of air venting on the work function of the TiO/SrTiO3(100
  • ) heterostructure, proving that surface reoxidation occurs and results in a work function increase of 0.9 eV and 0.6 eV for SrTiO3 and TiO, respectively. Additionally, the influence of adsorbed surface species was estimated to contribute 0.4 eV and 0.2 eV to the work function of both structures. The presented
PDF
Album
Full Research Paper
Published 02 Aug 2019

Green fabrication of lanthanide-doped hydroxide-based phosphors: Y(OH)3:Eu3+ nanoparticles for white light generation

  • Tugrul Guner,
  • Anilcan Kus,
  • Mehmet Ozcan,
  • Aziz Genc,
  • Hasan Sahin and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 1200–1210, doi:10.3762/bjnano.10.119

Graphical Abstract
  • material systems such as SrTiO3 [53], Zn2GeO4 [54], La(OH)3:Eu3+ and La2O3:Eu3+ [52] in the literature, is associated with fast crystal growth. A possible cause could be the oversaturation of reactant species. When the concentration of reactive species appears to be higher than the threshold (which may
PDF
Album
Full Research Paper
Published 07 Jun 2019

Pinning of a ferroelectric Bloch wall at a paraelectric layer

  • Vilgelmina Stepkova and
  • Jiří Hlinka

Beilstein J. Nanotechnol. 2018, 9, 2356–2360, doi:10.3762/bjnano.9.220

Graphical Abstract
  • Vilgelmina Stepkova Jiri Hlinka Institute of Physics, The Czech Academy of Sciences, 182 21 Prague, Czech Republic 10.3762/bjnano.9.220 Abstract The phase-field simulations of ferroelectric Bloch domain walls in BaTiO3–SrTiO3 crystalline superlattices performed in this study suggest that a
  • ferroelectric Bloch wall passing through it. Thus, ferroelectric Bloch domain walls are shown to be ideal nanoscale objects with switchable properties. The reported results hint towards the possibility to exploit ferroelectric domain wall interaction with simple nanoscale devices. Keywords: BaTiO3–SrTiO3
  • phenomena as the parent ferroelectric materials. For example, in the case of BaTiO3–SrTiO3 superlattices with only a few atomic layers of SrTiO3, the domain walls are simply expected to penetrate through BaTiO3/SrTiO3 interfaces [1][2][3][4][5]. In general, it can be expected that a small amount of
PDF
Album
Full Research Paper
Published 31 Aug 2018

Combined pulsed laser deposition and non-contact atomic force microscopy system for studies of insulator metal oxide thin films

  • Daiki Katsube,
  • Hayato Yamashita,
  • Satoshi Abo and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2018, 9, 686–692, doi:10.3762/bjnano.9.63

Graphical Abstract
  • grown on substrate materials have been studied for correlated electron heterostructures and devices. One of the most important and common uses of epitaxial LaAlO3 is its interface with SrTiO3 for studies of electrical conductivity [4], superconductivity [59], photoconductivity [60], and
  • -doped SrTiO3(100) (dopant level 0.05 wt %) and non-doped LaAlO3(100) for (a) and (c), respectively. Parameters used for thin-film growth of the anatase TiO2(001) were Ts = 800 °C, PO ≈ 1 × 10−4 Pa, I = 0.8 J/cm2, fp = 2 Hz. For LaAlO3(100) thin film growth, the parameters were Ts = 900 °C, PO ≈ 1 × 10−3
PDF
Album
Full Research Paper
Published 21 Feb 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • promising amalgamated g-C3N4–SrTiO3 photocatalyst by a simple thermal method. The as-prepared composites showed exceptional properties for photocatalytic degradation of bisphenol A (BPA) under intense sunlight due to the enhanced migration of photogenerated charges over the close interfacial connections
  • between g-C3N4 and SrTiO3 [34]. Thus, wide band gap materials can play an important role in maximizing the photocatalytic activity of g-C3N4 by suppressing the photogenerated charge recombination. CaTiO3 (CT) is a well-known titanium-based perovskite material with a wide band gap of ≈3.5 eV and its
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • coupling with semiconductor materials such as TiO2 [73], ZnO [74], CdS [75], SnO2 [76], CeO2 [77], WO3 [78], Fe2O3 [79], Ag3PO4 [80], Ag3VO4 [81], ZnWO4 [82], SrTiO3 [83], BiVO4 [84], Bi2WO6 [85], BiOX [86][87], etc. These heterojunction formations have proved to be an effective method to improve the
  • -C3N4–Ag3VO4, g-C3N4–ZnWO4, g-C3N4–SrTiO3, g-C3N4–BiWO4, and g-C3N4–Bi2WO6. Such kinds of nanocomposites have been widely explored with remarkably enhanced photocatalytic performance as compared to their respective bare counterparts. Recently, Woo et al. [84] reported their investigation on a sulfur
  • the perovskite-type cubic structure is the flexibility to tune the composition of the A and B sites to form substituted materials [148]. Strontium titanate (SrTiO3) is an important dielectric material, with a band gap energy of 3.2 eV. The SrTiO3 has been explored as an ideal photocatalytic material
PDF
Album
Review
Published 03 Aug 2017

Microscopic characterization of Fe nanoparticles formed on SrTiO3(001) and SrTiO3(110) surfaces

  • Miyoko Tanaka

Beilstein J. Nanotechnol. 2016, 7, 817–824, doi:10.3762/bjnano.7.73

Graphical Abstract
  • Miyoko Tanaka Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan 10.3762/bjnano.7.73 Abstract Fe nanoparticles grown on SrTiO3 (STO) {001} and {110} surfaces at room temperature have been studied in ultrahigh
  • . From profile-view TEM images, approximate values of the adhesion energy of the nanoparticles for both shapes are obtained. Keywords: epitaxial orientation relationship; iron (Fe); nanoparticles; morphology; scanning electron microscopy (SEM); strontium titanate (SrTiO3); transmission electron
  • and polarities [6][7][8][9][10]. SrTiO3 (STO) is one of the substrate materials being extensively studied for these purposes. Attempts have been made to grow metal nanoparticles of controlled sizes and morphologies on its surface by using chemical etching, controlling geometry, fabricating
PDF
Album
Full Research Paper
Published 07 Jun 2016

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
  • colossal electro-resistance (CER). For the perovskite heterojunction La0.32Pr0.33Ca0.33MnO3 with 0.5 wt % Nb-doped SrTiO3, the influence of a magnetic field on the temperature-dependent photovoltaic effect was reported [5]. In contrast, STNO has a band gap of around Eg = 3.2 eV [25] and the reported type
PDF
Album
Full Research Paper
Published 07 Jul 2015

High photocatalytic activity of V-doped SrTiO3 porous nanofibers produced from a combined electrospinning and thermal diffusion process

  • Panpan Jing,
  • Wei Lan,
  • Qing Su and
  • Erqing Xie

Beilstein J. Nanotechnol. 2015, 6, 1281–1286, doi:10.3762/bjnano.6.132

Graphical Abstract
  • /bjnano.6.132 Abstract In this letter, we report a novel V-doped SrTiO3 photocatalyst synthesized via electrospinning followed by a thermal diffusion process at low temperature. The morphological and crystalline structural investigations reveal not only that the V-doped SrTiO3 photocatalyst possesses a
  • uniform, porous, fibrous structure, but also that some V5+ ions are introduced into the SrTiO3 lattice. The photocatalytic capability of V-doped SrTiO3 porous nanofibers was evaluated through photodegrading methyl orange (MO) in aqueous solution under artificial UV–vis light. The results indicated that V
  • -doped SrTiO3 porous nanofibers have excellent catalytic efficiency. Furthermore, the excellent catalytic activity was maintained even after five cycle tests, indicating that they have outstanding photocatalytic endurance. It is suggested that the excellent photocatalytic performance of doped SrTiO3
PDF
Album
Letter
Published 09 Jun 2015

Overview of nanoscale NEXAFS performed with soft X-ray microscopes

  • Peter Guttmann and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 595–604, doi:10.3762/bjnano.6.61

Graphical Abstract
  • thin film devices (SrTiO3) could be demonstrated [64]. The change of resistance in a RRAM device could be assigned to a redox-process. The switching filament could be allocated to extended growth defects which are already present in the virgin films. Synthesis of anisotropic core-shell Fe3O4@Au
PDF
Album
Review
Published 27 Feb 2015

Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts

  • Jing Wang,
  • Ke Feng,
  • Hui-Hui Zhang,
  • Bin Chen,
  • Zhi-Jun Li,
  • Qing-Yuan Meng,
  • Li-Ping Zhang,
  • Chen-Ho Tung and
  • Li-Zhu Wu

Beilstein J. Nanotechnol. 2014, 5, 1167–1174, doi:10.3762/bjnano.5.128

Graphical Abstract
  • ][27][28][29][30][31][32][33]. Specifically, graphene has been involved in photocatalytic hydrogen production systems [34], such as TiO2-(N)RGO-Pt [35][36][37][38], g-C3N4-RGO-Pt [39], CdS-RGO-Pt [40][41][42][43], MoS2-NRGO [44][45], EY-RGO-Pt [46] and BiVO4-RGO-Ru/SrTiO3:Rh [47] (RGO: reduced graphene
PDF
Album
Supp Info
Full Research Paper
Published 29 Jul 2014

Growth and characterization of CNT–TiO2 heterostructures

  • Yucheng Zhang,
  • Ivo Utke,
  • Johann Michler,
  • Gabriele Ilari,
  • Marta D. Rossell and
  • Rolf Erni

Beilstein J. Nanotechnol. 2014, 5, 946–955, doi:10.3762/bjnano.5.108

Graphical Abstract
  • voltage of 60 kV to avoid beam damage, Suenaga et al. have been able to detect single calcium atoms inside the metallofullerence-doped single-wall nanotubes [46]. Nakagawa et al. have applied the atomic-scale EELS to the study of the (001) LaAlO3 and SrTiO3 interfaces, and observed an asymmetry between
  • ionically and electronically compensated interfaces, which explains why some semiconductor interfaces cannot be atomically sharp [48]. Recently, Rossell et al. [49] have adopted STEM-EELS combined with multivariate statistical analysis (MSA) to map the distribution of Ba dopant atoms in SrTiO3 nanoparticles
  • showing the N_K edge of gaseous N2. An atomic-resolution chemical mapping of Ba-doped SrTiO3 nanoparticles: (a) the HAADF-STEM image of a Ba-doped STO nanoparticle along the [011] direction; (b) the simultaneous chemical mappings measuring the Ti_L2,3, Sr_M4,5, and Ba_M4,5 edges, respectively, and the
PDF
Album
Review
Published 02 Jul 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • carbon nanodot–TiO2 nanotube [130], carbon nanodot–SrTiO3 film [131], carbon nanodot–TiO2 nanoparticle [114], and carbon nanodot–ZnO nanorod arrays [132], exhibited a good performance for photoelectrochemical water splitting or photocatalytic activity in dye degradation under visible light irradiation
PDF
Album
Review
Published 23 May 2014

Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy

  • Federico Baiutti,
  • Georg Christiani and
  • Gennady Logvenov

Beilstein J. Nanotechnol. 2014, 5, 596–602, doi:10.3762/bjnano.5.70

Graphical Abstract
  • is measured by a multimode atomic force microscope (AFM) by Veeco. In Figure 3 and Figure 4 we show AFM images for 25 nm thick La2NiO4 on SrTiO3 (STO) substrate and for La2CuO4 on LaSrAlO4 (LSAO) grown in our system, that suggest how our films are free from secondary phases outgrows and that layer-by
PDF
Album
Review
Published 08 May 2014

Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations

  • Carla Bittencourt,
  • Peter Krüger,
  • Maureen J. Lagos,
  • Xiaoxing Ke,
  • Gustaaf Van Tendeloo,
  • Chris Ewels,
  • Polona Umek and
  • Peter Guttmann

Beilstein J. Nanotechnol. 2012, 3, 789–797, doi:10.3762/bjnano.3.88

Graphical Abstract
  • -edge NEXAFS spectrum of the (Na,H)TiNTs shares common general features with the spectra recorded on anatase and SrTiO3 (Figure 3): they are composed of distinguishable peaks in the range between 455 and 470 eV corresponding to excitations of the Ti 2p states into the empty Ti 3d states [35]. Due to the
  • energy splitting of the fine structure in the L3–eg band. From Figure 3a, we can see that this value is 0, 0.44 and 0.82 eV, respectively, for SrTiO3, (Na,H)TiNTs and anatase. Krüger showed that the L3–eg peak splitting in TiO2 is a band-structure effect, which mainly reflects the connectivity of the
  • TiO6 octahedra rather than local distortions of the individual octahedra [8]. In the SrTiO3 structure all octahedra are connected by their corners such that the oxygen atoms have coordination 2. In anatase the oxygen atoms have coordination 3 and connect one corner- and two edge-sharing octahedra
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2012

The memory effect of nanoscale memristors investigated by conducting scanning probe microscopy methods

  • César Moreno,
  • Carmen Munuera,
  • Xavier Obradors and
  • Carmen Ocal

Beilstein J. Nanotechnol. 2012, 3, 722–730, doi:10.3762/bjnano.3.82

Graphical Abstract
  • permitted observation of the complete writing (positives Vtip), reading (small negative Vtip) and erasing (negatives Vtip) process. In our setup, the sample was always grounded and the voltage was applied to the tip. Given the insulating character of the substrates used (SrTiO3), the direct electrical
  • the electrical characteristics of the memristor highly reproducible. Experimental Sample preparation La0.7Sr0.3MnO3 (LSMO) films with a thickness in the range of 10–24 nm were grown by chemical solution deposition (CSD) on (100)SrTiO3 (STO) substrates [11]. The metal–organic solution was deposited by
PDF
Album
Full Research Paper
Published 06 Nov 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
  • should be pointed out that the SSD technique is not limited to the deposition of titanium dioxide and was utilized for patterned growth of other oxides such as In2O3 [70], Ta2O5, SnO2 and SrTiO3 [69]. The most popular means for selective growth is direct site-selective deposition (Figure 4), based on
PDF
Album
Review
Published 20 Dec 2011

Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films

  • Luyang Han,
  • Ulf Wiedwald,
  • Johannes Biskupek,
  • Kai Fauth,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 473–485, doi:10.3762/bjnano.2.51

Graphical Abstract
  • Physik IV, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany 10.3762/bjnano.2.51 Abstract The thermally activated formation of nanoscale CoPt alloys was investigated, after deposition of self-assembled Co nanoparticles on textured Pt(111) and epitaxial Pt(100) films on MgO(100) and SrTiO3(100
  • resulting local alloy. In this paper we report the experimental details and results for the specific case of Co NPs on top of Pt(111)/MgO(100) and Pt(100)/SrTiO3(100). (For the sake of clarity and brevity, SrTiO3(100) is renamed STO(100) in the following). Pt films on MgO(100) and STO(100) Due to the
PDF
Album
Video
Full Research Paper
Published 23 Aug 2011

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • , in case of Pt, (111)-textured thin films (50 nm) were used which were obtained by pulsed laser deposition (PLD) at ambient temperature on MgO(001) or (100)-oriented films (80 nm) epitaxially grown by PLD on (001) strontium titanate (SrTiO3) crystals at 400 °C. In all cases, no special pre-treatment
  • is necessary and the substrates must be able to withstand this etching procedure. In this context, among dielectric materials especially, oxides such as MgO, sapphire, SrTiO3, quartz were found to be suitable, as well as materials forming thin oxide layers such as Si. Furthermore, adhesion of the NPs
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities