Search results

Search for "Young’s modulus" in Full Text gives 136 result(s) in Beilstein Journal of Nanotechnology.

A robust AFM-based method for locally measuring the elasticity of samples

  • Alexandre Bubendorf,
  • Stefan Walheim,
  • Thomas Schimmel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 1–10, doi:10.3762/bjnano.9.1

Graphical Abstract
  • elastic modulus from Δf22/Δf1. The method was used to give an estimate of the Young’s modulus of the FDTS thin film. Keywords: atomic force microscopy; contact resonances; elastic modulus; 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS); polymers; Young’s modulus; Introduction Knowledge of the local
  • ]. In physics, the band gap size of nanocrystals and the presence of planar defects on nanotubes are a function of the Young’s modulus [2][3]. Probing local elasticity requires an instrumentation capable of operating with high resolution and under different conditions, such as variable temperature
  • , pressure or humidity. Since its invention, the atomic force microscope (AFM) [4] has confirmed its value for locally determining nanomechanical properties, such as the Young’s modulus, of the sample surface. Initially, the measures were done qualitatively, with the cantilever operated in intermittent
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2018

Dry adhesives from carbon nanofibers grown in an open ethanol flame

  • Christian Lutz,
  • Julia Syurik,
  • C. N. Shyam Kumar,
  • Christian Kübel,
  • Michael Bruns and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 2719–2728, doi:10.3762/bjnano.8.271

Graphical Abstract
  • ]. Additionally, they are not applicable under conditions of high radiation like in outer space. Carbon nanotubes, however, benefit from excellent thermal stability up to 750 °C in air and 2800 °C in vacuum [29], alongside a high mechanical strength with a Young’s modulus of 0.8 TPa and a tensile strength of 150
PDF
Album
Full Research Paper
Published 15 Dec 2017

High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

  • Alfredo J. Diaz,
  • Hanaul Noh,
  • Tobias Meier and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2069–2082, doi:10.3762/bjnano.8.207

Graphical Abstract
  • -resonance frequency and quality factor are often referred to as mechanical parameters. Although, there are methods to approximately calibrate for the Young’s modulus, they require a standard reference sample with similar properties to the unknown sample, and this includes the surface properties [51
  • ]. Despite the extensive use of PEDOT:PSS, only few mechanical property investigations have been performed [40], which have mostly dealt with microscale film thicknesses [55][56]. Films with nanoscale thickness have shown lower Young’s modulus, E, compared to thicker reported values [40]. The decrease in E
  • and for particles with random orientation, among others. Since the calculation of the Young’s modulus with AFM methods is not reliable (as also discussed above) [51], the strain is measured instead and related to the peak imaging forces. The increased force obtained from bimodal AFM for increasing
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2017

Nanotribological behavior of deep cryogenically treated martensitic stainless steel

  • Germán Prieto,
  • Konstantinos D. Bakoglidis,
  • Walter R. Tuckart and
  • Esteban Broitman

Beilstein J. Nanotechnol. 2017, 8, 1760–1768, doi:10.3762/bjnano.8.177

Graphical Abstract
  • relative elastic modulus, defined as Es and νs are Young’s modulus and Poisson’s ratio of the sample, and Ei and νi are Young’s modulus and Poisson’s ratio of the indenter (Ei = 1140 GPa, νi = 0.07). This approach does not allow for the simultaneous determination of E and H, but several researchers [33][34
PDF
Album
Full Research Paper
Published 25 Aug 2017

Miniemulsion copolymerization of (meth)acrylates in the presence of functionalized multiwalled carbon nanotubes for reinforced coating applications

  • Bertha T. Pérez-Martínez,
  • Lorena Farías-Cepeda,
  • Víctor M. Ovando-Medina,
  • José M. Asua,
  • Lucero Rosales-Marines and
  • Radmila Tomovska

Beilstein J. Nanotechnol. 2017, 8, 1328–1337, doi:10.3762/bjnano.8.134

Graphical Abstract
  • of the films was performed at 25 ºC and at 60 ºC (Figure 5). At 25 ºC, the addition of MWCNTs led to a substantial reinforcement of the polymer with significant differences between blends and in situ composites. Whereas the blends showed a high Young’s modulus followed by a softening after the yield
  • point, the in situ components presented a lower Young’s modulus with a gradual transition from elastic to plastic behavior. In addition, they had a much higher stress at break. The differences between blends and in situ composites were more acute in the tensile tests carried out at 60 ºC, where the in
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2017

Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

  • Benjamin Baumgärtner,
  • Hendrik Möller,
  • Thomas Neumann and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2017, 8, 1145–1155, doi:10.3762/bjnano.8.116

Graphical Abstract
  • ; Introduction Carbon fibers are widely used as reinforcement in ceramic, metal matrix and carbon composites because of their outstanding properties, such as high specific strength, a high Young’s modulus, low expansion coefficient and relative flexibility [1]. For the application in adsorption processes, carbon
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2017

Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

  • Julia Patzsch,
  • Deepu J. Babu and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 1135–1144, doi:10.3762/bjnano.8.115

Graphical Abstract
  • show outstanding elasticity and mechanical strength. A Young’s modulus of 600 GPa was measured for SiC wires [18][19]. Different templating methods were used for structuring such as the two-step synthesis using preceramic polymers as precursors (e.g., polycarbosilanes) [13][20][21], carbo-thermal
PDF
Album
Full Research Paper
Published 24 May 2017

Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

  • Sun-Kyu Lee,
  • Sori Hwang,
  • Yoon-Kee Kim and
  • Yong-Jun Oh

Beilstein J. Nanotechnol. 2017, 8, 1049–1055, doi:10.3762/bjnano.8.106

Graphical Abstract
  • function of the indentation depth (h). The Young’s modulus rapidly decreased as the indentation depth increased to ≈20 nm. In the nanoindentation measurements, the Young's modulus (Er) is given by Er = (√π/2β)(dP/dh)/√A where β is a constant, (dP/dh) is the slope of the load–displacement curve at the
PDF
Album
Letter
Published 12 May 2017

Scaling law to determine peak forces in tapping-mode AFM experiments on finite elastic soft matter systems

  • Horacio V. Guzman

Beilstein J. Nanotechnol. 2017, 8, 968–974, doi:10.3762/bjnano.8.98

Graphical Abstract
  • variables and where the indexes “t” and “s” stand for tip and sample, respectively, in the above equations, δ is the indentation, ν is the Poisson coefficient (νt = 0.3 and νs = 0.4) and E is the Young’s modulus with Et = 170 GPa. The effective Young’s modulus Eeff and radius Reff are described elsewhere
  • lower Young’s modulus values of the material. Figure 1b shows the comparison of the parametrical equation and numerical simulations for the whole range of Young moduli between 30 and 300 MPa for Asp = 0.9A0. Figure 1b and Figure 2 compare the parametrical equation of Equation 8 and the corresponding
  • nm (Figure 2). The peak force increases monotonically with the Young’s modulus of the sample. These results are consistent with previous numerical simulations [28][29]. In Figure 1b, the agreement between the parametrical equation and the numerical simulations in the explored range remains close to a
PDF
Album
Full Research Paper
Published 02 May 2017

Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy

  • Federico Gramazio,
  • Matteo Lorenzoni,
  • Francesc Pérez-Murano,
  • Enrique Rull Trinidad,
  • Urs Staufer and
  • Jordi Fraxedas

Beilstein J. Nanotechnol. 2017, 8, 883–891, doi:10.3762/bjnano.8.90

Graphical Abstract
  • experiments confirm the predicted dependence in the explored 3–45 N/m force constant range and 2–345 GPa sample’s stiffness range. For force constants around 25 N/m, the amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young’s modulus
  • experimental parameters, such as the tip radius (R) and the Young’s modulus of the sample (E). A list of well-accepted models can be found in the literature, including the most widely used Hertz, Derjaguin–Muller–Toporov (DMT) and Johnson–Kendall–Roberts (JKR) models, describing the analytical dependence on
  • tip radius, free oscillation amplitude, cantilever stiffness and sample Young’s modulus. Because of the low amplitudes of the involved harmonics (well below 1 nm), we concentrate on the repulsive regime of the tip–sample interaction and on those harmonics close to flexural eigenmodes of rectangular
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2017

Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins

  • Gheorghe Stan,
  • Richard S. Gates,
  • Qichi Hu,
  • Kevin Kjoller,
  • Craig Prater,
  • Kanwal Jit Singh,
  • Ebony Mays and
  • Sean W. King

Beilstein J. Nanotechnol. 2017, 8, 863–871, doi:10.3762/bjnano.8.88

Graphical Abstract
  • curing to create a 33% nanoporous organosilicate material with a nominal Young’s modulus of 5 GPa [36]. The pitch quarter patterning process consisted of first depositing on the nanoporous organosilicate a quad-layer film stack consisting of a backbone layer, an anti-reflection coating, a second backbone
  • spectra at 60 nN applied force of the first two eigenmodes from the same unpatterned film, 500 nm fins, and 90 nm fins that were measured in (a). The arrows indicate the frequency shifts of the two eigenmodes from air to contact. SiC–H3 absorbance (AFM-IR) and Young’s modulus (CR-AFM) as functions of the
  • feature size for unpatterned and patterned nanoporous organosilicates. Note: the error bars for the AFM-IR SiC–H3 absorbance represents the maximum variability observed from spectra acquired at different sites with the same feature size. The details of the errors associated with the CR-AFM Young’s modulus
PDF
Album
Full Research Paper
Published 13 Apr 2017

Vapor deposition routes to conformal polymer thin films

  • Priya Moni,
  • Ahmed Al-Obeidi and
  • Karen K. Gleason

Beilstein J. Nanotechnol. 2017, 8, 723–735, doi:10.3762/bjnano.8.76

Graphical Abstract
  • times the Young’s Modulus of a bare CNT sheet [40]. Emerging applications for ultrathin polymer films on nanostructured high aspect ratio structures include various energy storage devices and soft electronics. For instance, silicon based anodes are of interest for lithium ion batteries since Li–Si
PDF
Album
Review
Published 28 Mar 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • flexibility, and extraordinary electronic quality, and its superior thermal and mechanical properties [2][3]. Graphene exhibits high mechanical strength (>1060 GPa) and an exceptional Young’s modulus of 1 TPa [4]. Furthermore, single layer graphene is the strongest material ever tested [5]. It also exhibits
PDF
Album
Review
Published 24 Mar 2017

Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis

  • Omur E. Dagdeviren and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2017, 8, 657–666, doi:10.3762/bjnano.8.70

Graphical Abstract
  • values used for Young’s modulus E, the density ρ, Poisson’s ratio υ, and the damping coefficient η for all materials considered in the modeling, with values for quartz, epoxy glue, and Macor chosen as in [26] while the ones for gold and tungsten were taken from the material library of the simulation
PDF
Album
Full Research Paper
Published 20 Mar 2017

Advances in the fabrication of graphene transistors on flexible substrates

  • Gabriele Fisichella,
  • Stella Lo Verso,
  • Silvestra Di Marco,
  • Vincenzo Vinciguerra,
  • Emanuela Schilirò,
  • Salvatore Di Franco,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Amaia Zurutuza,
  • Alba Centeno,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2017, 8, 467–474, doi:10.3762/bjnano.8.50

Graphical Abstract
  • , from consumer devices [3] to biomedical in vivo applications [4][5]. Among all the two-dimensional materials, graphene is one of the most appealing to be used as a flexible, conductive membrane, given its Young’s modulus on the order of TPa and large spring constant (1–5 N/m) [6]. Besides its high
PDF
Album
Full Research Paper
Published 20 Feb 2017

Graphene–polymer coating for the realization of strain sensors

  • Carmela Bonavolontà,
  • Carla Aramo,
  • Massimo Valentino,
  • Giampiero Pepe,
  • Sergio De Nicola,
  • Gianfranco Carotenuto,
  • Angela Longo,
  • Mariano Palomba,
  • Simone Boccardi and
  • Carosena Meola

Beilstein J. Nanotechnol. 2017, 8, 21–27, doi:10.3762/bjnano.8.3

Graphical Abstract
  • corresponds to the maximum bending of the slat during the experiment. The force F was estimated by assuming E = 3.8 GPa for the Young’s modulus value of PMMA [12], and a moment of inertia Ics = wh3/12, where w = 0.02 m and h = 3 × 10 −3 m are the width and thickness of PMMA/graphene sample, respectively, and
PDF
Album
Full Research Paper
Published 03 Jan 2017

When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

  • Niall Crawford,
  • Thomas Endlein,
  • Jonathan T. Pham,
  • Mathis Riehle and
  • W. Jon P. Barnes

Beilstein J. Nanotechnol. 2016, 7, 2116–2131, doi:10.3762/bjnano.7.201

Graphical Abstract
  • difficult. The pads of tree frogs are very soft and so should deform to mould around rough surfaces, as is seen in smooth padded insects [17]. The Young’s modulus of the toe pads has been measured in several studies, an elastic modulus of 40–55 kPa based on AFM indentation being the most recent estimate [18
  • known size, which can lead to estimates of the Young’s modulus of tree frog toe pads. A similar analysis was used by Lorenz et al. [35], who studied the influence of contamination particles on the adhesion of viscoelastic materials. Using interference reflection microscopy, which allows one to estimate
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2016

Effective intercalation of zein into Na-montmorillonite: role of the protein components and use of the developed biointerfaces

  • Ana C. S. Alcântara,
  • Margarita Darder,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2016, 7, 1772–1782, doi:10.3762/bjnano.7.170

Graphical Abstract
  • . Similar results were observed in the STH/Z-MMT_S2 film, showing a Young’s modulus of 0.5 GPa, around twice that of the pristine starch film (0.2 GPa). This value is slightly higher than those reported for thermoplastic starch matrices reinforced by cationic starch-modified montmorillonite [27], probably
  • separation in absolute ethanol, while the PCT phase was firstly solubilized in 80% (v/v) ethanol/water. The polyacrylamide gels at 20% were silver-stained for band visualization. Mechanical properties The mechanical properties, Young’s modulus (E) and elongation at break, of the bionanocomposite film samples
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2016

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • and water content of the gel [114]. In the elastomer polymer, only the cross-linking density is varied. The stiffness of PDMS is modified by altering the ratio between monomer and curing agent, curing temperature, and curing time [114][115][166]. The Young’s modulus of PDMS can vary from 0.1 kPa [114
PDF
Album
Review
Published 08 Nov 2016

Biomechanics of selected arborescent and shrubby monocotyledons

  • Tom Masselter,
  • Tobias Haushahn,
  • Samuel Fink and
  • Thomas Speck

Beilstein J. Nanotechnol. 2016, 7, 1602–1619, doi:10.3762/bjnano.7.154

Graphical Abstract
  • , Young’s modulus and tensile strength of the vascular bundles in Dracaena marginata. These analyses allowed for generating a model for the mechanical interaction of tissues and vascular bundles of the stem in D. marginata as well as filling major “white spots” in property charts for biological materials
  • (see below), the variations of the axial Young’s modulus and the tissue densities at different radial and axial positions are assessed (Figure 2B). On a second hierarchical level, the Young’s moduli and the tensile strengths of individual fibrous vascular bundles of D. marginata are investigated
  • . marginata, secondary vessels (Figure 1C) are formed at the border between the central cylinder and the surrounding cortex. Results 1 Young’s modulus of five different monocotyledons Results for the Young’s modulus from experimental setup one (see paragraph 1 in section ’Experimental’) after measurements in
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2016

Fracture behaviors of pre-cracked monolayer molybdenum disulfide: A molecular dynamics study

  • Qi-lin Xiong,
  • Zhen-huan Li and
  • Xiao-geng Tian

Beilstein J. Nanotechnol. 2016, 7, 1411–1420, doi:10.3762/bjnano.7.132

Graphical Abstract
  • ][12][13][14]. Jiang et al. [15] presented a parameterization of the Stillinger–Weber (SW) potential to describe the interatomic interactions within single-layer MoS2 (SLMoS2). And based on this potential, they studied chirality, size, and strain effects on the Young’s modulus and the thermal
  • fracture strength of pre-cracked MoS2 sheet is where E is Young’s modulus, γs is the surface energy and F(w,a,a) is a function depending on the geometry parameters as defined in Equation 2. In Equation 2 a denotes a half of crack length, w is a half of MoS2 sheet width, and α is the kink angle of crack tip
  • . However, due to the significant difference between the fracture surface of different simulations, the surface energy varies dramatically (0.5–10 J/m2). With Young’s modulus calculated above and taking the surface energy of MoS2 sheet to be 5 J/m2 for calculating, the results obtained from three continuum
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2016

Influence of ambient humidity on the attachment ability of ladybird beetles (Coccinella septempunctata)

  • Lars Heepe,
  • Jonas O. Wolff and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1322–1329, doi:10.3762/bjnano.7.123

Graphical Abstract
  • high amounts of water [47]. Peisker et al. [46] showed a 6000-fold increase in the Young’s modulus of the setal tips after drying. Consequently, the degree of hydration should also significantly affect the mechanical properties of the setae of the beetles in the present study and may also explain our
PDF
Album
Full Research Paper
Published 22 Sep 2016

On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

  • Claudia Messerschmidt,
  • Daniel Hofmann,
  • Anja Kroeger,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2016, 7, 1296–1311, doi:10.3762/bjnano.7.121

Graphical Abstract
  • with the membrane. It has also been observed lately in an experimental setup for polymersomes and silica NPs [15][34]. Here notably the diameter of the particles was larger but also other parameters differ from our investigation in live cells like, i.e., the Young’s modulus of the polymersomes was much
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2016

Functional diversity of resilin in Arthropoda

  • Jan Michels,
  • Esther Appel and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1241–1259, doi:10.3762/bjnano.7.115

Graphical Abstract
  • polybutadiene [13][14]. Fully hydrated resilin has a rather low stiffness. In the elastic tendons of dragonflies and locust ligaments mentioned above, it was found to have a Young’s modulus of 0.6–0.7 MPa and 0.9 MPa, respectively [11]. In addition, fully hydrated resilin can be stretched to more than three
  • reflected by gradients of the mechanical properties of the respective resilin-containing composites. The material composition of adhesive tarsal setae of beetles (Figure 2B) represents a good example for such gradients. Recently, the Young’s modulus of such setae was measured along the longitudinal axis of
  • the setae (Figure 2C). The measurements revealed that the Young’s modulus of the material in the most distal section of each seta is relatively low (1.2 ± 0.3 MPa), whereas it is considerably higher at the setal base (6.8 ± 1.2 GPa). The differences in the Young’s modulus between different regions
PDF
Album
Review
Published 01 Sep 2016

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
  • ][49]. Loos et al. used different concentrations of acetone (0, 7, 10, 13 wt %) to produce epoxy samples [50]. They observed that fracture strain, tensile strength, and Young’s modulus significantly dropped, which was attributed to residual acetone. The degradation in mechanical properties was in
PDF
Album
Full Research Paper
Published 12 Aug 2016
Other Beilstein-Institut Open Science Activities