Search results

Search for "adhesion" in Full Text gives 392 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • crystalline phase of Sb2S3 for a thin layer on a mesoporous TiO2 scaffold [22][57]. For PDS measurements of the Sb-TU process, a TiO2 layer was spray-coated onto the glass before depositing the Sb2S3 layer because non-optimal adhesion prevents direct coating of glass with Sb-TU solution. The deposition
  • nm. Layers for SEM and AFM imaging were prepared on FTO TEC7 substrates by Pilkington after spray-coating of TiO2. Layers for PDS and UV–vis measurements were coated directly on Corning glass since – in contrast to the Sb-TU route – adhesion on glass was uncritical. Sb2S3 was exclusively processed
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa

  • Birgit Lengerer,
  • Marie Bonneel,
  • Mathilde Lefevre,
  • Elise Hennebert,
  • Philippe Leclère,
  • Emmanuel Gosselin,
  • Peter Ladurner and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2018, 9, 2071–2086, doi:10.3762/bjnano.9.196

Graphical Abstract
  • inspiration for biomedical and industrial applications. Nevertheless, natural adhesives and especially temporary adhesion systems are mostly unexplored. Sea stars are able to repeatedly attach and detach their hydraulic tube feet. This ability is based on a duo-gland system and, upon detachment, the adhesive
  • material stays behind on the substrate as a 'footprint'. In recent years, characterization of sea star temporary adhesion has been focussed on the forcipulatid species Asterias rubens. Results: We investigated the temporary adhesion system in the distantly related valvatid species Asterina gibbosa. The
  • adhesion and might facilitate the development of biomimetic, reversible glues. Keywords: duo-gland adhesive system; lectins; marine temporary adhesion; starfish; Introduction Marine biological adhesives are environmentally friendly, biodegradable, and adhere to various surfaces in the challenging
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • sliding nanosystems. This was demonstrated, e.g., for sheared graphite stacks [49], where nanomanipulation experiments also allowed the authors to determine the adhesion forces between the sliding graphite surfaces, simply by distinguishing between reversible displacement forces related to the
  • conservative adhesion energy and irreversible friction forces. The same mechanisms of adhesion-driven forces in combination with structural lubricity have recently been observed for other systems as well. First, adhesion was found as the driving force for the formation of graphene nanoribbons by a self tearing
  • process after nanoindentation experiments [73]. Secondly, also the self-retracting motion of graphene nanostacks can be explained if tiny friction forces, i.e., superlubric friction [3], are overcome by the adhesion-driven forces [50][51]. At the same time, the self-retracting motion of graphene stacks
PDF
Album
Review
Published 16 Jul 2018

Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants

  • Aikaterini-Rafailia Tsiapla,
  • Varvara Karagkiozaki,
  • Veroniki Bakola,
  • Foteini Pappa,
  • Panagiota Gkertsiou,
  • Eleni Pavlidou and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2018, 9, 1986–1994, doi:10.3762/bjnano.9.189

Graphical Abstract
  • . Cytotoxicity studies were performed by using MTT assay, methylene-blue staining and SEM fixation and showed very good cell adhesion and proliferation, indicating the cytocompatibility of these fibrous scaffolds. Drug-release kinetics was measured for the evaluation of a controllable and sustained release of
  • results of the samples in contact with L929 cells are shown in Figure 8. The absorbance values of both scaffolds on the first day compared to the control group (cells only) were sufficiently high, indicating the initial adhesion of the cells to the surface. Then, the cell population gradually increased
PDF
Album
Full Research Paper
Published 13 Jul 2018

Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale

  • Arindam Dasgupta,
  • Mickaël Buret,
  • Nicolas Cazier,
  • Marie-Maxime Mennemanteuil,
  • Reinaldo Chacon,
  • Kamal Hammani,
  • Jean-Claude Weeber,
  • Juan Arocas,
  • Laurent Markey,
  • Gérard Colas des Francs,
  • Alexander Uskov,
  • Igor Smetanin and
  • Alexandre Bouhelier

Beilstein J. Nanotechnol. 2018, 9, 1964–1976, doi:10.3762/bjnano.9.187

Graphical Abstract
  • a 2 nm thick Cr or Ti adhesion layer to improve gold adhesion on the glass substrate. A scanning electron micrograph of a pristine 150 nm wide Au constriction formed between two bow-tie leads is exemplified in Figure 1a. The electrical connections of the constriction to outside control electronics
  • . The thickness of the nanowire and electrodes is 50 nm, including a 5 nm Ti adhesion layer. The third step is the dry etching of the TiO2 layer. For that, we first create an etching mask by electron-beam lithography, thermal deposition of a 30 nm thick nickel layer and lift-off. Reactive ion etching is
PDF
Album
Full Research Paper
Published 11 Jul 2018

Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants

  • Reika Makita,
  • Tsukasa Akasaka,
  • Seiichi Tamagawa,
  • Yasuhiro Yoshida,
  • Saori Miyata,
  • Hirofumi Miyaji and
  • Tsutomu Sugaya

Beilstein J. Nanotechnol. 2018, 9, 1735–1754, doi:10.3762/bjnano.9.165

Graphical Abstract
  • of the surface of biomaterials. Surface topographical patterns significantly affect cell adhesion, spreading, morphology, proliferation, and differentiation [1][2][3][4][5]. Surfaces with specific micro/nanopatterns have been developed in order to reduce platelet response [6], to regulate stem cell
  • shapes, using genipin crosslinking, can easily fabricate “sharp” patterns that can control the morphology and vinculin expression of cells grown on these surfaces. This control of cell shape and vinculin expression by patterning is known to be able to control cell adhesion, function, and differentiation
PDF
Album
Full Research Paper
Published 11 Jun 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • dried overnight to let the water trapped underneath the MoS2 NSs to be removed naturally. Next, the sample was baked at 110 °C for 10 min to improve the uniformity and the adhesion to the substrate. Finally, the PMMA was dissolved in acetone. Physical characterization methods The morphology of
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system

  • Christiane Petzold,
  • Marcus Koch and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2018, 9, 1647–1658, doi:10.3762/bjnano.9.157

Graphical Abstract
  • ultrahigh vacuum. We measured very low friction forces compared to adhesion forces and found a modulation of lateral forces reflecting the atomic structure of the surfaces. Holding the force-microscopy tip stationary for some time did not lead to an increase in static friction, i.e., no contact ageing was
  • and flat surface was investigated in slide–hold–slide experiments similar to those reported in [8], but under UHV conditions at low loads (ca. 0 nN, i.e., the load was controlled by adhesion). As the name “slide–hold–slide” suggests, a tip was slid in contact over a surface, then held stationary for a
  • strong tip–sample adhesion. Sliding activated tips against Au(111) always resulted in a decrease of friction, both for activated SiOx/Si tips (Figure 4d) and activated Au/Si tips (Figure 4e). Additional information about the friction processes can be obtained by comparing topography features before and
PDF
Album
Full Research Paper
Published 05 Jun 2018

Interaction-tailored organization of large-area colloidal assemblies

  • Silvia Rizzato,
  • Elisabetta Primiceri,
  • Anna Grazia Monteduro,
  • Adriano Colombelli,
  • Angelo Leo,
  • Maria Grazia Manera,
  • Roberto Rella and
  • Giuseppe Maruccio

Beilstein J. Nanotechnol. 2018, 9, 1582–1593, doi:10.3762/bjnano.9.150

Graphical Abstract
  • another beaker of milli-Q water at 100 °C for 60 s in order to increase the particle contact area on the substrate surface (and thus the adhesion forces) for preserving the electrostatically ordered configuration in the next steps [24]. Finally, the samples were rinsed again with milli-Q water at room
  • deposited both on bare and positively charged functionalized substrates. In the case of bare substrates (samples labeled as BS), only few, rather isolated particles were observed on the surface. We ascribed these results to a poor adhesion between the particles and the substrate, leading the particles to
  • removal of the particles not properly absorbed to the substrate by electrostatic interaction. Immersing the still wet sample in a boiling water bath allows preservation of the electrostatically assembled, ordered structure by increasing the particle contact area (and adhesion) on the substrate surface [24
PDF
Album
Full Research Paper
Published 29 May 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • with the trade name Silver Nano™ in their washing machines, air conditioners, refrigerators, air purifiers and vacuum cleaners, which use ionic Ag NPs [34]. NPs and NSMs are extensively used in auto production: as fillers in tires to improve adhesion to the road, fillers in the car body to improve the
  • are exposed via an extensive microscopic study. It has been shown that adhesion is ensured by sub-micrometric devices whereas flies and beetles rely on terminal setae that are of micrometer dimensions. The principle of contact mechanics, which shows that the adhesion leads to the splitting of contacts
  • capillary attractive forces and molecular interactions [230] or van der Waals interactions leads to adhesion [231]. This may be due to the production of secretory fluids in the contact area by some animals (insects) [232][233][234], whereas others do not (spiders, geckos) [235][236], which makes the basic
PDF
Album
Review
Published 03 Apr 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • peak force or tapping mode. Besides conventional topographic images, peak force mode yields several concomitant images which map mechanical properties of the sample, like adhesion, elastic modulus, dissipation and others [64]. The adhesion channel monitors tip–sample attractive forces along the imaging
  • process, producing high-resolution adhesion maps [64]. Topographic tapping images were acquired at a setpoint ratio S = A/A0 = 0.8–0.9, where A0 and A are free and imaging amplitudes, respectively. For peak force imaging, topographic images were acquired at a peak force F = 1 nN. Photo-assisted
  • covering a graphite microplate substrate. (b) High-resolution AFM image (adhesion channel in peak force mode – see Experimental section) of the RA monolayer. The inset shows its fast Fourier transform, evidencing well-defined periodical RA ripples (periodicity: 2.7 ± 0.1 nm). (c) Schematic representation
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

Scanning speed phenomenon in contact-resonance atomic force microscopy

  • Christopher C. Glover,
  • Jason P. Killgore and
  • Ryan C. Tung

Beilstein J. Nanotechnol. 2018, 9, 945–952, doi:10.3762/bjnano.9.87

Graphical Abstract
  • the lack of formation of a thin water layer on the surfaces of the samples at low humidity. Figure 6 shows the recorded contact-resonance frequencies on mica under low- and high-humidity conditions. Figure 7 shows the measured adhesion force as a function of the relative humidity for different RH
  • values for both mica and HOPG. On the hydrophilic mica sample, a distinct increase of measured adhesion forces is apparent with increasing relative humidity. This suggests the growth of the thin water film on mica with increasing relative humidity. The observed behavior of the adhesion force for
  • phenomenon was not observed in the regime suggests that the additional water layers have changed the dynamics of the tip–sample interaction. Furthermore, higher adhesion forces found on mica at 70% RH might change the threshold speed needed to achieve hydrodynamic lift. Conclusion This work has shown the
PDF
Album
Full Research Paper
Published 21 Mar 2018

Nanoscale mapping of dielectric properties based on surface adhesion force measurements

  • Ying Wang,
  • Yue Shen,
  • Xingya Wang,
  • Zhiwei Shen,
  • Bin Li,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 900–906, doi:10.3762/bjnano.9.84

Graphical Abstract
  • studies and applications. Here, we report a novel method for the characterization of local dielectric distributions based on surface adhesion mapping by atomic force microscopy (AFM). The two-dimensional (2D) materials graphene oxide (GO), and partially reduced graphene oxide (RGO), which have similar
  • thicknesses but large differences in their dielectric properties, were studied as model systems. Through direct imaging of the samples with a biased AFM tip in PeakForce Quantitative Nano-Mechanics (PF-QNM) mode, the local dielectric properties of GO and RGO were revealed by mapping their surface adhesion
  • : adhesion; atomic force microscopy (AFM); graphene oxide (GO); nanoscale dielectric properties; reduced graphene oxide (RGO); Introduction The local dielectric distribution is a key factor that influences the physical properties and functionalities of various materials such as polymer nanocomposites [1][2
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2018

Comparative study of antibacterial properties of polystyrene films with TiOx and Cu nanoparticles fabricated using cluster beam technique

  • Vladimir N. Popok,
  • Cesarino M. Jeppesen,
  • Peter Fojan,
  • Anna Kuzminova,
  • Jan Hanuš and
  • Ondřej Kylián

Beilstein J. Nanotechnol. 2018, 9, 861–869, doi:10.3762/bjnano.9.80

Graphical Abstract
  • formation of the particles with semiconducting properties required for the catalytic formation of reactive oxygen species. Cu NPs are used as deposited. Partial NP embedding into polystyrene is realised in a controllable manner using thermal annealing in order to improve surface adhesion and make the
  • into the matrix [4]. It is worth mentioning that the methods providing dispersion of NPs in the polymer bulk are not of high interest for bactericidal applications. Particles must be located at surfaces to be active agents. At the same time, adhesion of NPs should be considerably high in order to be
  • , which allows for mass (size) selection by electrostatic fields as earlier described in [22]. For the current experiments particles of mean diameter of approximately 15 nm are used. To improve the adhesion of the deposited NPs, the samples with deposited clusters are annealed at 120 °C for 5 min in
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • , France Department of Physics and Astronomy, University of Turku, FIN-20014 Turku, Finland 10.3762/bjnano.9.61 Abstract Adhesion forces between functionalized gold colloidal nanoparticles (Au NPs) and scanning probe microscope silicon tips were experimentally investigated by atomic force microscopy (AFM
  • ) equipped with PeakForce QNM (Quantitative Nanoscale Mechanics) module. Au NPs were synthesized by a seed-mediated process and then functionalized with thiols containing different functional groups: amino, hydroxy, methoxy, carboxy, methyl, and thiol. Adhesion measurements showed strong differences between
  • NPs and silicon tip depending on the nature of the tail functional group. The dependence of the adhesion on ligand density for different thiols with identical functional tail-group was also demonstrated. The calculated contribution of the van der Waals (vdW) forces between particles was in good
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene

  • Maryam Barzegar,
  • Masoud Berahman and
  • Azam Iraji zad

Beilstein J. Nanotechnol. 2018, 9, 608–615, doi:10.3762/bjnano.9.57

Graphical Abstract
  • microelectrodes with 100 µm width and a 200 µm gap between each electrode remained and were annealed at 200 °C for 120 min for better film adhesion. Gas sensing measurements In order to test the samples toward different gas molecules, a dynamic system based on N2 as a carrier gas is used. For testing the sensor
PDF
Album
Full Research Paper
Published 16 Feb 2018

Single-step process to improve the mechanical properties of carbon nanotube yarn

  • Maria Cecilia Evora,
  • Xinyi Lu,
  • Nitilaksha Hiremath,
  • Nam-Goo Kang,
  • Kunlun Hong,
  • Roberto Uribe,
  • Gajanan Bhat and
  • Jimmy Mays

Beilstein J. Nanotechnol. 2018, 9, 545–554, doi:10.3762/bjnano.9.52

Graphical Abstract
  • is noticed that there is a complete interaction between the CNT yarn surface and the PAA leading to a good adhesion. There are almost no empty spaces between MWCNTs and PAA. The modification happens on the surface as well as inside of the fiber. In this study, CNT yarns treated with AA and AN and
PDF
Album
Full Research Paper
Published 13 Feb 2018

Engineering of oriented carbon nanotubes in composite materials

  • Razieh Beigmoradi,
  • Abdolreza Samimi and
  • Davod Mohebbi-Kalhori

Beilstein J. Nanotechnol. 2018, 9, 415–435, doi:10.3762/bjnano.9.41

Graphical Abstract
  • hard, solid or powder, biological, and organic or inorganic surfaces. This device can measure geometric morphology, adhesion distribution, friction, surface impurities, texture, elasticity, magnetism, chemical bonding forces, distribution of electric charges and electric polarization in different parts
  • of the surface. In practice, this feature is used to study corrosion, cleanness, uniformity, roughness, adhesion, friction, size, etc. AFM, like SEM and TEM, is a suitable technique to characterize the alignment of CNTs, especially horizontal alignment; for instance, when the CNTs grow horizontally
  • by FTIR can confirm the results of observations [137][143][144][145]. For example, it has been reported that adhesion of the polymer to the CNT leads to constrained motion of the polymer chains and simplifies the charge transfer process, which consequently improves transport properties [146]. Also
PDF
Album
Review
Published 05 Feb 2018

Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells

  • Liga Saulite,
  • Karlis Pleiko,
  • Ineta Popena,
  • Dominyka Dapkute,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2018, 9, 321–332, doi:10.3762/bjnano.9.32

Graphical Abstract
  • -negative/QD-positive cells represented cancer cells that have taken up the QDs released from MSCs during 3D co-culture (Figure 7). The proof of principle was additionally confirmed using cancer-cell-associated marker epithelial cell adhesion molecule (EpCAM) in nanoengineered MSC and MCF7 co-culture
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2018

Wafer-scale bioactive substrate patterning by chemical lift-off lithography

  • Chong-You Chen,
  • Chang-Ming Wang,
  • Hsiang-Hua Li,
  • Hong-Hseng Chan and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2018, 9, 311–320, doi:10.3762/bjnano.9.31

Graphical Abstract
  • change-required recognition, and bulky biological species binding are all accomplished with minimum nonspecific adhesion. Furthermore, multiplexed arrays via the integration of microfluidics are also achieved, which enables diverse applications of as-prepared substrates. By embracing the properties of
  • abundance of opportunities to create different bioactive substrates via a straightforward one-step SAM defect control. Compared to conventional biological platform generation, this matrix provides the advantages of wide probe compatibility, minimized nonspecific biospecies adhesion, versatile platform
  • self-orienting and reduced nonspecific probe–substrate adhesion. In Figure 2B, the second type of bioactive substrate fabrication approach relies on a labelled probe attachment with subsequent binding partner recognition induced signal output. A FAM-labelled thiolated hairpin-structured nucleotide
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2018

The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion

  • Stefan Fringes,
  • Felix Holzner and
  • Armin W. Knoll

Beilstein J. Nanotechnol. 2018, 9, 301–310, doi:10.3762/bjnano.9.30

Graphical Abstract
  • increase adhesion for the subsequently spin coated 175 ± 2 nm thick poly-phthalaldehyde (PPA) film. The thicknesses were measured with AFM. The refractive indices nHM = 1.67 and nPPA = 1.59 were measured by ellipsometry. The surface potential of PPA in 1 mM KCl solution (pH 7–7.5) was measured in a Malvern
PDF
Album
Full Research Paper
Published 26 Jan 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
  • microscope [8][10][11][12][13][14][15]. In situ studies of the dynamics of force interactions, conductance and adhesion in gold point contacts using combined transmission electron microscopy/scanning tunnelling microscopy (TEM-STM) [51][52] and atomic force microscopy/transmission electron microscopy (AFM
  • element and the contact electrode during NEM switch operation. The increase of adhesion in the contact or its conductivity reduction down to the noise level with repetitive switching degrades the device stability and often leads to device failure. The state of the art lifetime of NEM switches varies from
  • gradient of the total attractive force Fadh at the contact between the switching element and the electrode, and can be seen in I(V) curves as a sudden decrease of electrical current down to the noise level (Figure 2b). Since operation of NEM switches is substantially determined by adhesion forces due to
PDF
Album
Review
Published 25 Jan 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • nanostructures opens up new opportunities to improve the performance of hybrid nanomaterials. Many techniques for surface modification [4] and band-gap engineering [41][42] were described in the past few years. This allows for a control of size and homogeneity of Ag NPs, adhesion and charge distribution on the
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2018, 9, 242–249, doi:10.3762/bjnano.9.26

Graphical Abstract
  • twice the length of a DCPDMbpy molecule) on the terraces indicates that the diffusion is limited, implying also a relatively strong adhesion to the surface at specific sites. To reduce the binding energy of the molecules and stimulate a self-assembly, the sample was annealed for 1 h at 150 °C. However
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Al2O3/TiO2 inverse opals from electrosprayed self-assembled templates

  • Arnau Coll,
  • Sandra Bermejo,
  • David Hernández and
  • Luís Castañer

Beilstein J. Nanotechnol. 2018, 9, 216–223, doi:10.3762/bjnano.9.23

Graphical Abstract
  • layers could be confirmed, and at the same time, the adhesion of the ALD deposition in two steps was clearly confirmed. The deposition of TiO2 at 200 °C improved the characteristics of the layer, as can also be seen [35][36]. Optical response To determine the optical quality of the resulting inverse opal
PDF
Album
Full Research Paper
Published 19 Jan 2018
Other Beilstein-Institut Open Science Activities